Rigid Geometric Transformations

Carlo Tomasi

This note is a quick refresher of the geometry of rigid transformations in three-dimensional space, expressed in Cartesian coordinates.

1 Cartesian Coordinates

Let us assume the notions of the distance between two points and the angle between lines to be known from geometry. The law of cosines is also stated without proof if a, b, c are the sides of a triangle and the angle between a and b is θ, then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta .
$$

The special case for $\theta=\pi / 2$ radians is known as Pythagoras' theorem.
The definitions that follow focus on three-dimensional space. Two-dimensional geometry can be derived as a special case when the third coordinate of every point is set to zero.

A Cartesian reference system for three-dimensional space is a point in space called the origin and three mutually perpendicular, directed lines though the origin called the axes. The order in which the axes are listed is fixed, and is part of the definition of the reference system. The plane that contains the second and third axis is the first reference plane. The plane that contains the third and first axis is the second reference plane. The plane that contains the first and second axis is the third reference plane.

It is customary to mark the axis directions by specifying a point on each axis and at unit distance from the origin. These points are called the unit points of the system, and the positive direction of an axis is from the origin towards the axis' unit point. A Cartesian reference system is right-handed if the smallest rotation that brings the first unit point to the second is counterclockwise when viewed from the third unit point. The system is left-handed otherwise.

The Cartesian coordinates of a point in three-dimensional space are the signed distances of the point from the first, second, and third reference plane, in this order, and collected into a vector. The sign for coordinate i is positive if the point is in the half-space (delimited by the i-th reference plane) that contains the positive half of the i-th reference axis. It follows that the Cartesian coordinates of the origin are $\mathbf{t}=$ $(0,0,0)^{T}$, those of the unit points are the vectors $\mathbf{e}_{x}=(1,0,0)^{T}, \mathbf{e}_{y}=(0,1,0)^{T}$, and $\mathbf{e}_{z}=(0,0,1)^{T}$, and the vector $\mathbf{p}=(x, y, z)^{T}$ of coordinates of an arbitrary point in space can also be written as follows:

$$
\mathbf{p}=x \mathbf{e}_{x}+y \mathbf{e}_{y}+z \mathbf{e}_{z} .
$$

The point \mathbf{p} can be reached from the origin \mathbf{t} by the following polygonal path:

$$
\mathbf{t}, x \mathbf{e}_{x}, x \mathbf{e}_{x}+y \mathbf{e}_{y}, \mathbf{p} .
$$

[^0]Each segment of the path is followed by a right-angle turn, so Pythagoras' theorem can be applied twice to yield the distance of \mathbf{p} from the origin:

$$
d(\mathbf{t}, \mathbf{p})=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

From the definition of norm of a vector we see that

$$
d(\mathbf{t}, \mathbf{p})=\|\mathbf{p}\| .
$$

So the norm of the vector of coordinates of a point is the distance of the point from the origin. A vector is often drawn as an arrow pointing from the origin to the point whose coordinates are the components of the vector. Then, the result above shows that the length of that arrow is the norm of the vector. Because of this, the words "length" and "norm" are often used interchangeably.

2 Orthogonality

The law of cosines yields a geometric interpretation of the inner product of two vectors \mathbf{a} and \mathbf{b} :

Theorem 2.1.

$$
\mathbf{a}^{T} \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

where θ is the acute angle between the two arrows that represent \mathbf{a} and \mathbf{b} geometrically.
So the inner product of two vectors is the product of the lengths of the two arrows that represent them and of the cosine of the angle between them. See the appendix for a proof.

Setting $\theta=\pi / 2$ in the result above yields another important corollary:
Corollary 2.2. The arrows that represent two vectors \mathbf{a} and \mathbf{b} are mutually perpendicular if an only if the two vectors are orthogonal:

$$
\mathbf{a}^{T} \mathbf{b}=0
$$

Because of this result, the words "perpendicular" and "orthogonal" are often used interchangeably.

3 Orthogonal Projection

Given two vectors a and \mathbf{b}, the orthogonal projection of \mathbf{a} onto \mathbf{b} is the vector \mathbf{p} that represents the point p on the line through \mathbf{b} that is nearest to the endpoint of \mathbf{a}. See Figure 1 .
Theorem 3.1. The orthogonal projection of \mathbf{a} onto \mathbf{b} is the vector

$$
\mathbf{p}=P_{\mathbf{b}} \mathbf{a}
$$

where $P_{\mathbf{b}}$ is the following square, symmetric matrix:

$$
P_{\mathbf{b}}=\frac{\mathbf{b b}^{T}}{\mathbf{b}^{T} \mathbf{b}} .
$$

The signed magnitude of the orthogonal projection is

$$
p=\frac{\mathbf{b}^{T} \mathbf{a}}{\|\mathbf{b}\|}=\|\mathbf{p}\| \operatorname{sign}\left(\mathbf{b}^{T} \mathbf{a}\right) .
$$

Figure 1: The vector from the origin to point p is the orthogonal projection of \mathbf{a} onto \mathbf{b}. The line from the endpoint of a to p is orthogonal to \mathbf{b}.

From the definition of orthogonal projection we also see the following fact.
Corollary 3.2. The coordinates of a point in space are the signed magnitudes of the orthogonal projections of the vector of coordinates of the point onto the three unit vectors that define the coordinate axes.

This result is trivial in the basic Cartesian reference frame with unit points $\mathbf{e}_{x}=(1,0,0)^{T}, \mathbf{e}_{y}=$ $(0,1,0)^{T}, \mathbf{e}_{z}=(0,0,1)^{T}$. If $\mathbf{p}=(x, y, z)^{T}$, then obviously

$$
\mathbf{e}_{x} \mathbf{p}=x \quad, \quad \mathbf{e}_{y} \mathbf{p}=y \quad, \quad \mathbf{e}_{z} \mathbf{p}=z
$$

The result becomes less trivial in Cartesian reference systems where the axes have different orientations, as we will see soon.

4 The Cross Product

The cross product of two 3-dimensional vectors $\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right)^{T}$ and $\mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)^{T}$ is the 3-dimensional vector

$$
\mathbf{c}=\mathbf{a} \times \mathbf{b}=\left(a_{y} b_{z}-a_{z} b_{y}, a_{z} b_{x}-a_{x} b_{z}, a_{x} b_{y}-a_{y} b_{x}\right)^{T}
$$

The following geometric interpretation is proven in the Appendix:
Theorem 4.1. The cross product of two three-dimensional vectors \mathbf{a} and \mathbf{b} is a vector \mathbf{c} orthogonal to both \mathbf{a} and \mathbf{b}, oriented so that the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is right-handed, and with magnitude

$$
\|\mathbf{c}\|=\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the acute angle between \mathbf{a} and \mathbf{b}.
From its expression, we see that the magnitude of $\mathbf{a} \times \mathbf{b}$ is the area of a rectangle with sides \mathbf{a} and \mathbf{b}.
It is immediate to verify that the cross product of two vectors is a linear transformation of either vector:

$$
\mathbf{a} \times\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)=\mathbf{a} \times \mathbf{b}_{1}+\mathbf{a} \times \mathbf{b}_{2} \quad \text { and similarly } \quad\left(\mathbf{a}_{1}+\mathbf{a}_{2}\right) \times \mathbf{b}=\mathbf{a}_{1} \times \mathbf{b}+\mathbf{a}_{2} \times \mathbf{b}
$$

So there must be a 3×3 matrix $[\mathbf{a}] \times$ such that

$$
\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}
$$

This matrix is convenient for computing cross products of the form $\mathbf{a} \times \mathbf{p}$ where \mathbf{a} is a fixed vector but \mathbf{p} changes. Spelling out the definition of the cross product yields the following matrix:

$$
[\mathbf{a}]_{\times}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

This matrix is skew-symmetric:

$$
[\mathbf{a}]_{\times}^{T}=-[\mathbf{a}]_{\times} .
$$

Of course, similar considerations hold for \mathbf{b} : Since

$$
\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a},
$$

we have

$$
\mathbf{a} \times \mathbf{b}=-[\mathbf{b}]_{\times} \mathbf{a}=[\mathbf{b}]_{\times}^{T} \mathbf{a} .
$$

5 The Triple Product

The triple product of three-dimensional vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is defined as follows:

$$
\mathbf{a}^{T}(\mathbf{b} \times \mathbf{c})=a_{x}\left(b_{y} c_{z}-b_{z} c_{y}\right)-a_{y}\left(b_{x} c_{z}-b_{z} c_{x}\right)+a_{z}\left(b_{x} c_{y}-b_{y} c_{x}\right) .
$$

It is immediate to verify that

$$
\mathbf{a}^{T}(\mathbf{b} \times \mathbf{c})=\mathbf{b}^{T}(\mathbf{c} \times \mathbf{a})=\mathbf{c}^{T}(\mathbf{a} \times \mathbf{b})=-\mathbf{a}^{T}(\mathbf{c} \times \mathbf{b})=-\mathbf{c}^{T}(\mathbf{b} \times \mathbf{a})=-\mathbf{b}^{T}(\mathbf{a} \times \mathbf{c}) .
$$

Again, from its expression, we see that the triple product of vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is, up to a sign, the volume of a parallelepiped with edges $\mathbf{a}, \mathbf{b}, \mathbf{c}$: the cross product $\mathbf{p}=\mathbf{b} \times \mathbf{c}$ is a vector orthogonal to the plane of \mathbf{b} and \mathbf{c}, and with magnitude equal to the base area of the parallelepiped. The inner product of \mathbf{p} and \mathbf{a} is the magnitude of \mathbf{p} times that of a times the cosine of the angle between them, that is, the base area of the parallelepiped times its height (or the negative of its height). This gives the volume of the solid, up to a sign. The sign is positive if the three vectors form a right-handed triple. See Figure 2 .

Figure 2: Up to a sign, the triple product of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is the volume of the parallelepiped with edges $\mathrm{a}, \mathrm{b}, \mathbf{c}$.

6 Multiple Reference Systems

When two or more reference systems are involved, notation must be introduced to avoid possible ambiguities as to which reference system coordinates are referred to. For instance, we may want to express the coordinates of the origin of one system with respect to the other system.

Reference systems will be identified with natural numbers, and the number zero is reserved for a privileged system called the world reference system. A left superscript is used to identify the reference system that a vector or a transformation is written in. A left superscript of zero can be optionally omitted.

Thus, ${ }^{2} \mathbf{p}$ is the vector of the coordinates of point \mathbf{p} in reference frame 2. The same point in world coordinates can be written as either ${ }^{0} \mathbf{p}$ or just \mathbf{p}. The origin \mathbf{t} of a reference system has always zero coordinates in that reference system, so

$$
{ }^{i} \mathbf{t}_{i}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

for all natural numbers i, and therefore also

$$
\mathbf{t}_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

since a zero left superscript is implied. Similarly, if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit points of a reference system, we have

$$
\left[\begin{array}{ccc}
{ }^{i} \mathbf{i}_{i} & { }^{i} \mathbf{j}_{i} & { }^{i} \mathbf{k}_{i}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{i}_{0} & \mathbf{j}_{0} & \mathbf{k}_{0}
\end{array}\right]=I
$$

the 3×3 identity matrix.

7 Rotation

A rotation is a transformation between two Cartesian references systems of equal origin and handedness. Let the two systems be S_{0} (the world reference system) and S_{1}. Then, the common origin is

$$
\mathbf{t}_{0}=\mathbf{t}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

where the left superscripts were omitted because coordinates refer to the world reference system. The unit points of S_{1} are $\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{k}_{1}$ when their coordinates are expressed in S_{0}. Then a point with coordinates $\mathbf{p}=(x, y, z)^{T}$ in S_{0} can be reached from the origin \mathbf{t}_{1} common to the two systems by a polygonal path with the following four vertices:

$$
\mathbf{t}_{1} \quad, \quad \mathbf{a}={ }^{1} x \mathbf{i}_{1} \quad, \quad \mathbf{b}={ }^{1} x \mathbf{i}_{1}+{ }^{1} y \mathbf{j}_{1} \quad, \quad \mathbf{p}={ }^{1} x \mathbf{i}_{1}+{ }^{1} y \mathbf{j}_{1}+{ }^{1} z \mathbf{k}_{1}
$$

The steps of this path are along the axes of S_{1}. The numbers ${ }^{1} x,{ }^{1} y,{ }^{1} z$ are the magnitudes of the steps, and also the coordinates of the point in S_{1}. These step sizes are the signed magnitudes of the orthogonal projections of the point onto $\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{k}_{1}$, and from Theorem 3.1 we see that

$$
{ }^{1} x=\mathbf{i}_{1}^{T} \mathbf{p} \quad, \quad{ }^{1} y=\mathbf{j}_{1}^{T} \mathbf{p} \quad, \quad{ }^{1} z=\mathbf{k}_{1}^{T} \mathbf{p}
$$

because the vectors $\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{k}_{1}$ have unit norm. These three equations can be packaged into a single matrix equation that expresses the vector ${ }^{1} \mathbf{p}=\left({ }^{1} x,{ }^{1} y,{ }^{1} z\right)^{T}$ as a function of \mathbf{p} :

$$
{ }^{1} \mathbf{p}=R_{1} \mathbf{p} \quad \text { where } \quad R_{1}={ }^{0} R_{1}=\left[\begin{array}{c}
\mathbf{i}_{1}^{T} \\
\mathbf{j}_{1}^{T} \\
\mathbf{k}_{1}^{T}
\end{array}\right]
$$

where the 3×3 matrix ${ }^{0} R_{1}$ is called a rotation matrix.
This result was obtained without using the privileged status of the world reference system S_{0} (except to omit some of the left superscripts). Therefore, the result must be general: Given any two Cartesian reference systems S_{a} and S_{b} with a common origin,

$$
{ }^{b} \mathbf{p}={ }^{a} R_{b}{ }^{a} \mathbf{p} \quad \text { where } \quad{ }^{a} R_{b}=\left[\begin{array}{c}
{ }^{a} \mathbf{i}_{b}^{T} \\
{ }^{\mathbf{j}_{b}^{T}} \\
{ }^{a} \mathbf{k}_{b}^{T}
\end{array}\right] .
$$

A rotation is a reversible transformation, and therefore the matrix ${ }^{a} R_{b}$ must have an inverse, another matrix ${ }^{b} R_{a}$ that transforms back from S_{b} to S_{a} :

$$
{ }^{a} \mathbf{p}={ }^{b} R_{a}{ }^{b} \mathbf{p} .
$$

The proof of the following fact is given in the Appendix.
Theorem 7.1. The inverse R^{-1} of a rotation matrix R is its transpose:

$$
R^{T} R=R R^{T}=I .
$$

Equivalently, if ${ }^{a} R_{b}$ is the rotation whose rows are the unit points of reference systems b expressed in reference system a, then

$$
{ }^{b} R_{a}={ }^{a} R_{b}^{T}
$$

Note that R^{T}, being the inverse of R, is also a transformation between two Cartesian systems with the same origin and handedness, so R^{T} is a rotation matrix as well, and its rows must be mutually orthogonal unit vectors. Since the rows of R^{T} are the columns of R, we conclude that both the rows and columns of a rotation matrix are unit norm and orthogonal. This makes intuitive sense: Just as the rows of $R={ }^{a} R_{b}$ are the unit vectors of S_{b} expressed in S_{a}, so its columns (the rows of the inverse transformation $R^{T}={ }^{b} R_{a}$) are the unit vectors of S_{a} expressed in S_{b}.

The equations in Theorem 7.1 characterize combinations of rotations and possible inversions. An inversion (also known as a mirror flip) is a transformation that changes the direction of some of the axes. This is represented by a matrix of the form

$$
S=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]
$$

where $s_{x}, s_{y} s_{z}$ are equal to either 1 or -1 , and there is either one or three negative elements. It is easy to see that

$$
S^{T} S=S S^{T}=I
$$

If there were zero or two negative elements, then S would be a rotation matrix, because the flip of two axes can be achieved by a rotation. For instance, the directions of both the x and the y axis can be flipped simultaneously by a 180 -degree rotation around the z axis. No rotation can flip the directions of an odd number of axes.

The determinant of a 3×3 matrix is the triple product of its rows. Direct manipulation shows that this is the same as the triple product of its columns. It is immediate to see that the determinant of a rotation matrix is 1 :

$$
\operatorname{det}(R)=\mathbf{i}^{T}(\mathbf{j} \times \mathbf{k})=\mathbf{i}^{T} \mathbf{i}=1
$$

because

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j} .
$$

These equalities can be verified by the geometric interpretation of the cross product: each of the three vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ is orthogonal to the other two, and its magnitude is equal to 1 . The order of the vectors in the equalities above preserves handedness.

It is even easier to see that the determinant of an inversion matrix S is equal to -1 . Thus, the following conclusion can be drawn.

A matrix R is a rotation if and only if $R^{T} R=R R^{T}=I \quad$ and $\quad \operatorname{det}(R)=1$.
A diagonal matrix S is an inversion if and only if $S^{T} S=S S^{T}=I \quad$ and $\quad \operatorname{det}(S)=-1$.

Note that in particular the identity matrix I is a rotation, and $-I$ is an inversion.

Geometric Interpretation of Orthogonality. The orthogonality result

$$
R^{-1}=R^{T}
$$

is very simple, and yet was derived in the Appendix through a comparatively lengthy sequence of algebraic steps. This Section reviews orthogonality of rotation matrices from a geometric point of view, and derives the result above by conceptually simpler means. The rows of the rotation matrix

$$
{ }^{a} R_{b}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{c}
{ }^{a} \mathbf{i}_{b}^{T} \\
{ }^{a} \mathbf{j}_{b}^{T} \\
{ }^{a} \mathbf{k}_{b}^{T}
\end{array}\right]
$$

are the unit vectors of the reference system S_{b}, expressed in the reference system S_{a}. This means that its entry $r_{m n}$ is the signed magnitude of the orthogonal projection of the m-th unit vector in S_{b} onto the n-th unit vector in S_{a}. For instance,

$$
r_{12}={ }^{a} \mathbf{i}_{b}^{T a} \mathbf{j}_{a} \quad \text { and } \quad r_{31}={ }^{a} \mathbf{k}_{b}^{T} a_{\mathbf{i}_{a}} .
$$

However, the signed magnitude of the orthogonal projection of a unit vector onto another unit vector is simply the cosine of the angle between them:

$$
r_{i j}=\cos \alpha_{i j}
$$

where $\alpha_{i j}$ is the angle between the i-th axis in the new system and the j-th axis in the old.

Thus, the entries of a rotation matrix are direction cosines: they are all cosines of well-defined angles. This result also tells us that signed orthogonal projection magnitude is symmetric for unit vectors: For instance, the signed magnitude of the orthogonal projection of ${ }^{a} \mathbf{i}_{b}$ onto ${ }^{a} \mathbf{j}_{a}$ is the same as the signed magnitude of the orthogonal projection of ${ }^{a} \mathbf{j}_{a}$ onto ${ }^{a} \mathbf{i}_{b}$. Since angles do not depend on reference system, the projection is the same when expressed in S_{b} :

$$
r_{12}={ }^{a} \mathbf{i}_{b}^{T}{ }^{a} \mathbf{j}_{a}={ }^{a} \mathbf{j}_{a}^{T a} \mathbf{i}_{b}={ }^{b} \mathbf{j}_{a}^{T}{ }^{\boldsymbol{b}} \mathbf{i}_{b}
$$

where in the second equality we merely switched the two vectors with each other and in the third we changed the reference system (i.e., both left superscripts) from S_{a} to S_{b}.

This symmetry is the deep reason for orthogonality: When we want to go from the "new" system S_{b} back to the "old" system S_{a} through the inverse matrix $R^{-1}={ }^{b} R_{a}$, we seek to express the unit vectors of S_{a} in the system S_{b}, that is, we seek the signed magnitudes of the orthogonal projections of each unit vector of the "old" system S_{a} onto each of the unit vectors of the "new" system S_{b}. Because of symmetry, these orthogonal projections are already available in the matrix R, just in a different arrangement: what we want in the rows of R^{-1} can be found in the columns of R. Voilà:

$$
R^{-1}=R^{T}
$$

The Cross Product is Covariant with Rotations. We saw that the cross product of two vectors a and \mathbf{b} is a third vector \mathbf{c} that is orthogonal to both \mathbf{a} and \mathbf{b}, and whose signed magnitude is the product $\|\mathbf{a}\|\|\mathbf{b}\|$ times the sine of the angle θ between \mathbf{a} and \mathbf{b}. If \mathbf{a} and \mathbf{b} are simultaneously rotated by the same rotation R to produce the new vectors \mathbf{a}^{\prime} and \mathbf{b}^{\prime}, then the line orthogonal to \mathbf{a} and \mathbf{b} rotates the same way, because rotating \mathbf{a} and \mathbf{b} is the same as rotating the reference system in the opposite direction. Thus, the direction of $\mathbf{c}^{\prime}=\mathbf{a}^{\prime} \times \mathbf{b}^{\prime}$ is that of $R \mathbf{c}$. In addition, a rotation does not change the magnitudes of vectors it is applied to, nor does it change the angle between any pair of vectors. Therefore, $\mathbf{c}^{\prime}=R \mathbf{c}$. To summarize, this argument shows that the cross product is covariant with rotations:

$$
(R \mathbf{a}) \times(R \mathbf{b})=R(\mathbf{a} \times \mathbf{b}) .
$$

In words, if you rotate the inputs to a cross product, the output rotates the same way.

8 Coordinate Transformation

A right-handed Cartesian system of reference S_{1} can differ from the world reference system S_{0} by a translation of the origin from $\mathbf{t}_{0}=(0,0,0)^{T}$ to \mathbf{t}_{1} and a rotation of the axes from unit points $\mathbf{i}_{0}=\mathbf{e}_{x}, \mathbf{j}_{0}=\mathbf{e}_{y}$, $\mathbf{k}_{0}=\mathbf{e}_{z}$ to unit points $\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{k}_{1}$. Suppose that the origin of frame S_{0} is first translated to point \mathbf{t}_{1} and then the resulting frame is rotated by R_{1} (see Figure 3). Given a point with coordinates $\mathbf{p}=(x, y, z)^{T}$ in S_{0}, the coordinates ${ }^{1} \mathbf{p}=\left({ }^{1} x,{ }^{1} y,{ }^{1} z\right)^{T}$ of the same point in S_{1} are then

$$
\begin{equation*}
{ }^{1} \mathbf{p}=R_{1}\left(\mathbf{p}-\mathbf{t}_{1}\right) . \tag{1}
\end{equation*}
$$

The translation is applied first, to yield the new coordinates $\mathbf{p}-\mathbf{t}_{1}$ in an intermediate frame. This translation does not change the directions of the coordinate axes, so the rotation from the intermediate frame to S_{1} is the same rotation R_{1} as from S_{0} to S_{1}, which is applied thereafter.

The inverse transformation applies the inverse operations in reverse order:

$$
\begin{equation*}
\mathbf{p}=R_{1}^{T}{ }^{1} \mathbf{p}+\mathbf{t}_{1} . \tag{2}
\end{equation*}
$$

This can also be verified algebraically from equation (1): Multiplying both sides by R_{1}^{T} from the left yields

$$
R_{1}^{T}{ }^{1} \mathbf{p}=R_{1}^{T} R_{1}\left(\mathbf{p}-\mathbf{t}_{1}\right)=\mathbf{p}-\mathbf{t}_{1}
$$

and adding \boldsymbol{t}_{1} to both sides yields equation (2). Thus,

$$
{ }^{1} R_{0}={ }^{0} R_{1}^{T} \quad \text { and } \quad{ }^{1} \mathbf{t}_{0}=-{ }^{0} R_{1}{ }^{0} \mathbf{t}_{1}
$$

since

$$
\mathbf{p}=R_{1}^{T}{ }^{1} \mathbf{p}+\mathbf{t}_{1}=R_{1}^{T}\left({ }^{1} \mathbf{p}-\left(-R_{1} \mathbf{t}_{1}\right)\right) .
$$

More generally, if

$$
\begin{equation*}
{ }^{b} \mathbf{p}={ }^{a} R_{b}\left({ }^{a} \mathbf{p}-{ }^{a} \mathbf{t}_{b}\right) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
{ }^{a} \mathbf{p}={ }^{b} R_{a}\left({ }^{b} \mathbf{p}-{ }^{b} \mathbf{t}_{a}\right) \quad \text { where } \quad{ }^{b} R_{a}={ }^{a} R_{b}^{T} \quad \text { and } \quad{ }^{b} \mathbf{t}_{a}=-{ }^{a} R_{b}{ }^{a} \mathbf{t}_{b} . \tag{4}
\end{equation*}
$$

Figure 3: Transformation between two reference systems.
The transformations (3) and (4) are said to be rigid, in that they preserve distances. They are also sometimes referred to as special Euclidean, where the attribute "special" refers to the fact that mirror flips are not included-i.e., the determinant of the rotation matrix is 1 , rather than 1 just in magnitude.

Chaining Rigid Transformations If two right-handed Cartesian systems S_{a} and S_{b} are given, say, in the world reference system S_{0}, then the transformation from S_{a} to S_{b} can be obtained in two steps, just as we did for rotations: First transform from S_{a} to S_{0}, then from S_{0} to S_{b} :

$$
\mathbf{p}={ }^{0} \mathbf{p}={ }^{a} R_{0}\left({ }^{a} \mathbf{p}-{ }^{a} \mathbf{t}_{0}\right)={ }^{0} R_{a}^{T}\left({ }^{a} \mathbf{p}+{ }^{0} R_{a}{ }^{0} \mathbf{t}_{a}\right)=R_{a}^{T}{ }^{a} \mathbf{p}+\mathbf{t}_{a}
$$

and

$$
{ }^{b} \mathbf{p}={ }^{0} R_{b}\left({ }^{0} \mathbf{p}-{ }^{0} \mathbf{t}_{b}\right)=R_{b}\left(\mathbf{p}-\mathbf{t}_{b}\right)
$$

so that

$$
{ }^{b} \mathbf{p}=R_{b}\left(R_{a}^{T a} \mathbf{p}+\mathbf{t}_{a}-\mathbf{t}_{b}\right)=R_{b} R_{a}^{T}\left[{ }^{a} \mathbf{p}+R_{a}\left(\mathbf{t}_{a}-\mathbf{t}_{b}\right)\right]
$$

that is,

$$
{ }^{b} \mathbf{p}={ }^{a} R_{b}\left({ }^{a} \mathbf{p}-{ }^{a} \mathbf{t}_{b}\right) \quad \text { where } \quad{ }^{a} R_{b}=R_{b} R_{a}^{T} \quad \text { and } \quad{ }^{a} \mathbf{t}_{b}=R_{a}\left(\mathbf{t}_{b}-\mathbf{t}_{a}\right) .
$$

The following box summarizes these results:

If

$$
\mathbf{p}_{a}=R_{b}\left(\mathbf{p}-\mathbf{t}_{b}\right) \quad \text { and } \quad \mathbf{p}_{b}=R_{a}\left(\mathbf{p}-\mathbf{t}_{a}\right)
$$

are the transformations between world coordinates and reference frames S_{a} and S_{b}, then the transformation from S_{a} to S_{b} is

$$
{ }^{b} \mathbf{p}={ }^{a} R_{b}\left({ }^{a} \mathbf{p}-{ }^{a} \mathbf{t}_{b}\right) \quad \text { where } \quad{ }^{a} R_{b}=R_{b} R_{a}^{T} \quad \text { and } \quad{ }^{a} \mathbf{t}_{b}=R_{a}\left(\mathbf{t}_{b}-\mathbf{t}_{a}\right)
$$

and the reverse transformation, from S_{b} to S_{a}, is

$$
{ }^{a} \mathbf{p}={ }^{b} R_{a}\left({ }^{b} \mathbf{p}-{ }^{b} \mathbf{t}_{a}\right) \quad \text { where } \quad{ }^{b} R_{a}=R_{a} R_{b}^{T} \quad \text { and } \quad{ }^{b} \mathbf{t}_{a}=R_{b}\left(\mathbf{t}_{a}-\mathbf{t}_{b}\right) .
$$

Consistently with these relations,

$$
{ }^{b} R_{a}={ }^{a} R_{b}^{T} \quad \text { and } \quad{ }^{b} \mathbf{t}_{a}=-{ }^{a} R_{b}{ }^{a} \mathbf{t}_{b}
$$

A Proofs

Theorem 2.1

$$
\mathbf{a}^{T} \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

where θ is the acute angle between the two arrows that represent \mathbf{a} and \mathbf{b} geometrically.
Proof. Consider a triangle with sides

$$
a=\|\mathbf{a}\| \quad, \quad b=\|\mathbf{b}\| \quad, \quad c=\|\mathbf{b}-\mathbf{a}\|
$$

and with an angle θ between a and b. Then the law of cosines yields

$$
\|\mathbf{b}-\mathbf{a}\|^{2}=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

From the definition of norm we then obtain

$$
\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2 \mathbf{a}^{T} \mathbf{b}=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Canceling equal terms and dividing by -2 yields the desired result.

Theorem 3.1

The orthogonal projection of \mathbf{a} onto \mathbf{b} is the vector

$$
\mathbf{p}=P_{\mathbf{b}} \mathbf{a}
$$

where P_{b} is the following square, symmetric matrix:

$$
P_{\mathbf{b}}=\frac{\mathbf{b b}^{T}}{\mathbf{b}^{T} \mathbf{b}}
$$

The signed magnitude of the orthogonal projection is

$$
p=\frac{\mathbf{b}^{T} \mathbf{a}}{\|\mathbf{b}\|}=\|\mathbf{p}\| \operatorname{sign}\left(\mathbf{b}^{T} \mathbf{a}\right)
$$

Proof. To prove this, observe that since by definition point p is on the line through \mathbf{b}, the orthogonal projection vector \mathbf{p} has the form $\mathbf{p}=x \mathbf{b}$, where x is some real number. From elementary geometry, the line between p and the endpoint of \mathbf{a} is shortest when it is perpendicular to \mathbf{b} :

$$
\mathbf{b}^{T}(\mathbf{a}-x \mathbf{b})=0
$$

which yields

$$
x=\frac{\mathbf{b}^{T} \mathbf{a}}{\mathbf{b}^{T} \mathbf{b}}
$$

so that

$$
\mathbf{p}=x \mathbf{b}=\mathbf{b} x=\frac{\mathbf{b} \mathbf{b}^{T}}{\mathbf{b}^{T} \mathbf{b}} \mathbf{a}
$$

as advertised. The magnitude of \mathbf{p} can be computed as follows. First, observe that

$$
P_{\mathbf{b}}^{2}=\frac{\mathbf{b b}^{T}}{\mathbf{b}^{T} \mathbf{b}} \frac{\mathbf{b} \mathbf{b}^{T}}{\mathbf{b}^{T} \mathbf{b}}=\frac{\mathbf{b b}^{T} \mathbf{b b}^{T}}{\left(\mathbf{b}^{T} \mathbf{b}\right)^{2}}=\frac{\mathbf{b b}^{T}}{\mathbf{b}^{T} \mathbf{b}}=P_{\mathbf{b}}
$$

so that the orthogonal-projection matrix ${ }^{2} P_{\mathbf{b}}$ is idempotent:

$$
P_{\mathbf{b}}^{2}=P_{\mathbf{b}} .
$$

This means that applying the matrix once or multiple times has the same effect. Then,

$$
\|\mathbf{p}\|^{2}=\mathbf{p}^{T} \mathbf{p}=\mathbf{a}^{T} P_{\mathbf{b}}^{T} P_{\mathbf{b}} \mathbf{a}=\mathbf{a}^{T} P_{\mathbf{b}} P_{\mathbf{b}} \mathbf{a}=\mathbf{a}^{T} P_{\mathbf{b}} \mathbf{a}=\mathbf{a}^{T} \frac{\mathbf{b} \mathbf{b}^{T}}{\mathbf{b}^{T} \mathbf{b}} \mathbf{a}=\frac{\left(\mathbf{b}^{T} \mathbf{a}\right)^{2}}{\mathbf{b}^{T} \mathbf{b}}
$$

which, once the sign of $\mathbf{b}^{t} \mathbf{a}$ is taken into account, yields the promised expression for the signed magnitude of \mathbf{p}.

Theorem 4.1

The cross product of two three-dimensional vectors \mathbf{a} and \mathbf{b} is a vector \mathbf{c} orthogonal to both \mathbf{a} and \mathbf{b}, oriented so that the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is right-handed, and with magnitude

$$
\|\mathbf{c}\|=\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the acute angle between \mathbf{a} and \mathbf{b}.
Proof. That the cross product \mathbf{c} of \mathbf{a} and \mathbf{b} is orthogonal to both \mathbf{a} and \mathbf{b} can be checked directly:

$$
\begin{aligned}
\mathbf{c}^{T} \mathbf{a} & =\left(a_{y} b_{z}-a_{z} b_{y}\right) a_{x}+\left(a_{z} b_{x}-a_{x} b_{z}\right) a_{y}+\left(a_{x} b_{y}-a_{y} b_{x}\right) a_{z}=0 \\
\mathbf{c}^{T} \mathbf{b} & =\left(a_{y} b_{z}-a_{z} b_{y}\right) b_{x}+\left(a_{z} b_{x}-a_{x} b_{z}\right) b_{y}+\left(a_{x} b_{y}-a_{y} b_{x}\right) b_{z}=0
\end{aligned}
$$

(verify that all terms do indeed cancel). We also have

$$
\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}+\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}
$$

as can be shown by straightforward manipulation:

$$
\begin{aligned}
\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}= & \left(a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right)\left(a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right) \\
= & a_{x}^{2} b_{x}^{2}+a_{x} b_{x} a_{y} b_{y}+a_{x} b_{x} a_{z} b_{z} \\
& +a_{y}^{2} b_{y}^{2}+a_{x} b_{x} a_{y} b_{y}+a_{y} b_{y} a_{z} b_{z} \\
& +a_{z}^{2} b_{z}^{2}+a_{x} b_{x} a_{z} b_{z}+a_{y} b_{y} a_{z} b_{z} \\
= & a_{x}^{2} b_{x}^{2}+a_{y}^{2} b_{y}^{2}+a_{z}^{2} b_{z}^{2}+2 a_{x} b_{x} a_{y} b_{y}+2 a_{y} b_{y} a_{z} b_{z}+2 a_{x} b_{x} a_{z} b_{z}
\end{aligned}
$$

and

$$
\begin{aligned}
\|\mathbf{a} \times \mathbf{b}\|^{2}= & \left(a_{y} b_{z}-a_{z} b_{y}\right)^{2}+\left(a_{z} b_{x}-a_{x} b_{z}\right)^{2}+\left(a_{x} b_{y}-a_{y} b_{x}\right)^{2} \\
= & a_{y}^{2} b_{z}^{2}+a_{z}^{2} b_{y}^{2}-2 a_{y} b_{y} a_{z} b_{z} \\
& +a_{x}^{2} b_{z}^{2}+a_{z}^{2} b_{x}^{2}-2 a_{x} b_{x} a_{z} b_{z} \\
& +a_{x}^{2} b_{y}^{2}+a_{y}^{2} b_{x}^{2}-2 a_{x} b_{x} a_{y} b_{y} \\
= & a_{x}^{2} b_{y}^{2}+a_{y}^{2} b_{x}^{2}+a_{y}^{2} b_{z}^{2}+a_{z}^{2} b_{y}^{2}+a_{x}^{2} b_{z}^{2}+a_{z}^{2} b_{x}^{2} \\
& -2 a_{x} b_{x} a_{y} b_{y}-2 a_{y} b_{z} a_{y} b_{y}-2 a_{x} b_{x} a_{z} b_{z}
\end{aligned}
$$

[^1]so that
$$
\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}+\|\mathbf{a} \times \mathbf{b}\|^{2}=a_{x}^{2} b_{x}^{2}+a_{x}^{2} b_{y}^{2}+a_{x}^{2} b_{z}^{2}+a_{y}^{2} b_{x}^{2}+a_{y}^{2} b_{y}^{2}+a_{y}^{2} b_{z}^{2}+a_{z}^{2} b_{x}^{2}+a_{z}^{2} b_{y}^{2}+a_{z}^{2} b_{z}^{2}
$$
but also
$$
\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}=a_{x}^{2} b_{x}^{2}+a_{x}^{2} b_{y}^{2}+a_{x}^{2} b_{z}^{2}+a_{y}^{2} b_{x}^{2}+a_{y}^{2} b_{y}^{2}+a_{y}^{2} b_{z}^{2}+a_{z}^{2} b_{x}^{2}+a_{z}^{2} b_{y}^{2}+a_{z}^{2} b_{z}^{2}
$$
so that
\[

$$
\begin{equation*}
\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}+\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \tag{5}
\end{equation*}
$$

\]

as desired. The result on the magnitude is a consequence of equation (5). From this equation we obtain

$$
\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \cos ^{2} \theta=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \sin ^{2} \theta
$$

or

$$
\|\mathbf{a} \times \mathbf{b}\|= \pm\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

Since the angle θ is acute (from the law of cosines), all quantities in the last equation are nonnegative, so that the - sign yields an impossible equation. This yields the promised result.

Theorem 7.1

The inverse R^{-1} of a rotation matrix R is its transpose:

$$
R^{T} R=R R^{T}=I .
$$

Equivalently, if ${ }^{a} R_{b}$ is the rotation whose rows are the unit points of reference systems bexpressed in reference system a, then

$$
{ }^{b} R_{a}={ }^{a} R_{b}^{T} .
$$

Proof. Assume that $a=0$ and $b=1$, so that left superscripts equal to 0 can be omitted. This assumption can be made without loss of generality, because the following proof makes no use of the privileged nature of system S_{0}, other than for simplifying away left superscripts. Also, for further brevity, let

$$
R={ }^{0} R_{1} .
$$

When we rotate point \mathbf{p} through R we obtain a vector ${ }^{1} \mathbf{p}$ of coordinates in S_{1}. We then look for a new matrix $R^{-1}={ }^{1} R_{0}$ that applied to ${ }^{1} \mathbf{p}$ gives back the original vector \mathbf{p} :

$$
{ }^{1} \mathbf{p}=R \mathbf{p} \quad \rightarrow \quad \mathbf{p}=R^{-11} \mathbf{p}
$$

that is, by combining these two equations,

$$
\mathbf{p}=R^{-1} R \mathbf{p}
$$

Since this equality is to hold for any vector \mathbf{p}, we need to find R^{-1} such that

$$
R^{-1} R=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The matrix R^{-1} is called the left inverse of R. However, even a right inverse, that is, a matrix Q such that

$$
R Q=I
$$

will do. This is because for any square matrix A, if the matrix B is the right inverse of A, that is, if $A B=I$, then B is also the left inverse:

$$
B A=I
$$

The proof of this fact is a single line: suppose that B is the right inverse of A and the left inverse is a matrix C, so that $C A=I$. Then

$$
C=C I=C(A B)=(C A) B=I B=B,
$$

which forces us to conclude that B and C are the same matrix. So we can drop "left" or "right" and merely say inverse.

The inverse R^{-1} of the rotation matrix R is more easily found by looking for a right inverse. The three vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ that make up the rows of R have unit norm,

$$
\mathbf{i}^{T} \mathbf{i}=\mathbf{j}^{T} \mathbf{j}=\mathbf{k}^{T} \mathbf{k}=1,
$$

and are mutually orthogonal:

$$
\mathbf{i}^{T} \mathbf{j}=\mathbf{j}^{T} \mathbf{k}=\mathbf{k}^{T} \mathbf{i}=0
$$

Because of this,

$$
R R^{T}=\left[\begin{array}{c}
\mathbf{i}^{T} \\
\mathbf{j}^{T} \\
\mathbf{k}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{i}^{T} \mathbf{i} & \mathbf{i}^{T} \mathbf{j} & \mathbf{i}^{T} \mathbf{k} \\
\mathbf{j}^{T} \mathbf{i} & \mathbf{j}^{T} \mathbf{j} & \mathbf{j}^{T} \mathbf{k} \\
\mathbf{k}^{T} \mathbf{i} & \mathbf{k}^{T} \mathbf{j} & \mathbf{k}^{T} \mathbf{k}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

as promised.

[^0]: ${ }^{1}$ A proof based on trigonometry is straightforward but tedious, and a useful exercise.

[^1]: ${ }^{2}$ The matrix that describes orthogonal projection is not an orthogonal matrix. It could not possibly be, since it is rank-deficient.

