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Constraint	Satisfaction	Problems
(CSPs)

CPS	570
Ron	Parr

CSPs
• What	 is	a	CSP?
• One	view:	 	Search	with	special	goal	criteria
• CSP	definition	 (general):

– Variables	X1,…,Xn

– Variable	Xi has	domain	Di

– Constraints	C1,…,Cm

– Solution:		Each	variable	gets	a	value	from	its	domain	
such	that	no	constraints	violated

• CSP	examples…
– http://www.csplib.org/

Other	CSP	Examples

• Satisfying	curriculum/major	 requirements

• Sudoku

• Seating	arrangements	 at	a	party

• LSAT	Questions:
http://www.lsac.org/JD/pdfs/SamplePTJune.pdf

A	Restricted	View
• Variables	X1,…,Xn

• A	binary	constraint,	lists	permitted	assignments	to	
pairs	of	variables

• A	binary	constraint	between	binary	variables	is	a	
table	of	size	4,	listing	legal	assignments	for	all	4	
combinations.

• A	k-ary	constraint	lists	legal	assignments	to	k	
variables	at	a	time.

• How	large	is	a	k-ary	constraint	for	binary	variables?

Note:	 	More	expressive	 languages	 are	often	used.
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CSP	Example
Graph	coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland	(Q)South
Australia
(SA) New	South

Whales	(NSW)

Victoria	(V)Tasmania	(T)

Problem:	 Assign	Red,	Green and	Blue so	that	no	2	adjacent
regions	have	 the	same	color.	 (3-coloring)

Example	Contd.

• Variables:	 	{WA,	NT,	Q,	SA,	NSW,	V,	T}
• Domains:	 	{R,G,B}
• Constraints:

For	WA	– NT:{(R,G),	(R,B),	(G,B),	(G,R),	(B,R),	(B,G)}

• We	have	a	table	 for	each	adjacent	pair
• Are	our	constraints	 binary?
• Can	every	 CSP	be	viewed	as	a	graph	problem?

Constraint	Graph

WA
NT

Q
SA NSW

VT

WA

NT

SA

Q

NSW

V

T

Enumerate	 all
Legal	 combinations
Of	WA	and	SA
(ignoring	other	 regions)

CSPs	as	Search

WA

NT

SA

Q

NSW

V

T

Nodes:	Partial	Assignments

WA

NT

SA

Q

NSW

V

T

Actions:	 	Make	Assignments
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Backtracking

• Backtracking	is	the	most	obvious	(and	widely	used)	
method	for	solving	CSPs:
– Search	 forward	by	assigning	values	 to	variables
– If	stuck,	undo	the	most	recent	 assignment	and	 try	again
– Repeat	 until	success	or	all	 combinations	tried

• Embellishments
– Methods	for	picking	next	variable	 to	assign
(e.g.	 most	constrained)

– Backjumping

NP-Completeness	of	CSPs
• Are	CSPs	in	NP?
• Are	 they	NP-hard?

• CSPs	and	graph	coloring	 are	equivalent
• Convert	 any	graph	coloring	 problem	 to	CSP
• Convert	 any	CSP	 to	graph	coloring	

• Known:	 	Graph	coloring	 is	NP-complete
• CSPs	are	NP-complete
• End	of	the	story	or	 just	the	beginning?

Constraint	Graphs

• Constraint	graphs	are	important	because	they	capture	the	
structural	relationships	between	the	variables

• IMPORTANT	CONCEPT:
Not	all	instances	of	a	hard	problem	class	are	hard

– Structural	 features	 give	 insight	into	hardness
– Example:	 	Planar	graphs	are	known	to	be	4-colorable
– Group	problems	within	class	by	structural	 features
– New	measure	 of	problem	complexity

Linear	Constraint	Structures

X1 X2 X3 X4 X5 X6

Are	 these	easy	or	hard?
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Properties	of	Chains

Theorem:	 	Any	chain	of	length	n	can	be	2-colored

Proof:		Induction	on	n.

Base:		Chains	of	length	1	can	be	2-colored.

I.H.		Chains	of	length	i can	be	2-colored.

I.S.		Extending	an	i step	chain	by	1	new	arc	consistent	link	produces	an	i+1	
link	chain	that	can	be	2-colored.

Proof	of	I.S.:		2-color	the	length	i chain,	then	color	the	new	link	with	a	color	
different	from	the	node	to	which	it	is	connected

Properties	of	Trees

Theorem:	 	k-colorability of	trees	can	be	verified	 in	polynomial	
time.

Proof:	Generalize	 the	chain	case...

Corollary:	 	Hardness	of	CSPs	with	constraint	trees	 is

Polynomial!

Cool	fact:		We	now	have	a	graph-based	 test	 for	separating
out	some	of	the	hard	problems	 from	the	easy	ones.

Variable	Elimination

WA

NT

SA

Q

NSW

V

NT

SA

Q

NSW

V

Domain(NT,SA)	=	{(blue,	green),	(blue,	red),
(green,	blue),	(green,	red),	(red,	blue),	(red,	green)}

Eliminate	 WA

Eliminate	Q

NT

SA

Q

NSW

V

NT

SA NSW

V

Domain(NT,SA,NSW)	 =	 {(blue,	green, blue),	(blue,	 red,	blue),
(red,	blue,	 red),	 (red,	green,	 red),	 (green,	 blue,	green),
(green,	 red, green)}
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Simplify

NT

SA NSW

V

Domain(NT,SA,NSW)	 =	 {(blue,	green, blue),	(blue,	 red,	blue),
(red,	blue,	 red),	 (red,	green,	 red),	 (green,	 blue,	green),
(green,	 red, green)}

Domain(SA,	 NSW)	=
{(blue,	green),	 (blue,	 red),
(green,	 blue),	 (green,	 red),
(red,	blue),	 (red,	green)}

Finish

SA NSW

V

Domain(SA,	 NSW)	=
{(blue,	green),	 (blue,	 red),
(green,	 blue),	 (green,	 red),
(red,	blue),	 (red,	green)}

Can	identify	all	settings	of	SA,	V,	NSW	for	which
there	is	guaranteed	to	be	a	consistent	setting	of
the	remaining	variables.

Q:	 	How	do	we	 get	 the	settings	of	the	other	variables?

Variable	Elimination

Var_elim_CSP_solve	 (vars,	constraints)
Q	=	queue	of	all	 variables
i	=	 length(vars)+1
While	not(empty(Q))

X	=	pop(Q)
Xi	=	merge(X,	 neighbors(X))
Simplify	 Xi	(remove	 variables	 w/o	external	 connections)
remove_from_Q(Q,	 neighbors(X))
add_to_Q(Q,	 Xi)
i=i+1

Note:	 	Merge	 operation	can	be	tricky	 to	implement,	 depending
upon	constraint	language.

Variable	Elimination	Issues

• How	expensive	 is	this?

• Is	it	sensitive	 to	elimination	 ordering?

Exponential	 in	size	of	largest	merged	 variable	 set.

Yes!
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Variable	Elimination	Ordering

Is	it	better	 to	start	at	 the	edges	and	work	 in,	or	at	 the	center
and	work	out?

Edges!

Variable	Elimination	Facts

• You	can	figure	out	the	cost	of	a	particular	elimination	
ordering	without	actually	constructing	the	tables

• Finding	optimal	elimination	ordering	is	NP	hard
• Good	heuristics	for	finding	near	optimal	orderings
• Another	structural	complexity	measure
• Investment	in	finding	good	ordering	can	be	amortized

CSP	Summary

• CSPs	are	a	specialized	language	for	describing	certain	
types	of	decision	problems

• In	general,	CSPs	are	NP	hard	– no	general,	fast	
solutions	on	the	horizon

• In	some	cases,	we	can	use	structural	measures	of	
complexity	to	figure	out	which	ones	are	really	hard


