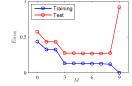


Methods for Choosing Features

- Cross validation
- Regularization
 - Non-Bayesian (L₁, L₂, etc.)
 - Bayesian

Cross Validation

- Suppose we have many possible hypothesis spaces, e.g., different degree polynomials
- Recall our empirical performance results:



• Why not use the data to find min of the red curve?

Implementing Cross Validation

- Many possible approaches to cross validation
- Typical approach divides data into k equally sized chunks:
 - Do k instances of learning
 - For each instance hold out 1/k of the data
 - Train on (k-1)/k fraction of the data
 - Test on held out data
 - Average results
- Can also sample subsets of data with replacement
- Cross validation can be used to search range of hypothesis classes to find where **overfitting** starts

Problems with Cross Validation

- Cross validation is a sound method, but requires a lot of data and/or is slow
- Must trade off two factors:
 - Want enough data within each run
 - Want to average over enough trials
- With scarce data:
 - Choose k close to n
 - Almost as many learning problems as data points
- With abundant data (then why are you doing cross validation?)
 - Choose k = a small constant, e.g., 10
 - Not too painful if you have a lot of parallel computing resources and a lot of data, e.g., if you are Google

Regularization

- Cross validation may also be impractical if range of hypothesis classes is not easily enumerated a searched iteratively
- Regularization aims to avoid overfitting, while
 - Avoiding speed penalty of cross validation
 - Not assuming an ordering on hypothesis spaces
- ...but you still need to do some kind of cross-validation in the end.

Regularization

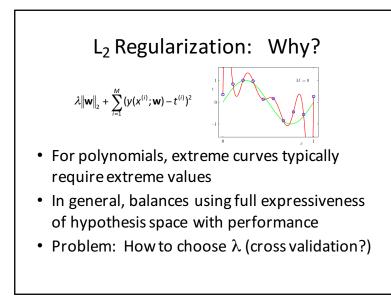
- Idea: Penalize overly complicated answers
- Ordinary regression minimizes:

$$\sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t_i)^2$$

• L₂ Regularized regression minimizes:

$$\lambda \left\| \mathbf{w} \right\|_{2} + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^{2}$$

• Note: May exclude constants form the norm



The L₂ Regularized Solution

• Minimize:

$$\lambda \left\| \mathbf{w} \right\|_2 + \sum_{i=1}^M (y(x^{(i)}; \mathbf{w}) - t^{(i)})^2$$

- Set gradient to 0, solve for w for features Φ : $\mathbf{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{t}$
- Compare with unregularized solution

 $\mathbf{w} = (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}$

A Bayesian Perspective

- Suppose we have a space of possible hypotheses H
- Which hypothesis has the highest posterior:

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

- P(D) does not depend on H; maximize numerator
- Uniform P(H) is called Maximum Likelihood solution (model for which data has highest prob.)
- P(H) can be used for regularization

Maximum Likelihood

• For many models, the empirical mean is also the maximum likelihood solution

 $P(D | H) = P(t^{(1)} ... t^{(m)} | \mu, \sigma)$

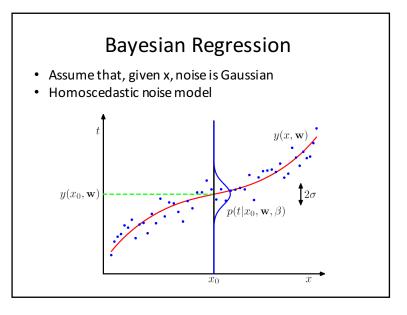
- Suppose:
 - Data normally distributed
 - Unknown mean, variance
 - IID samples

Priors for Gaussians

• Recall Bayes rule:

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

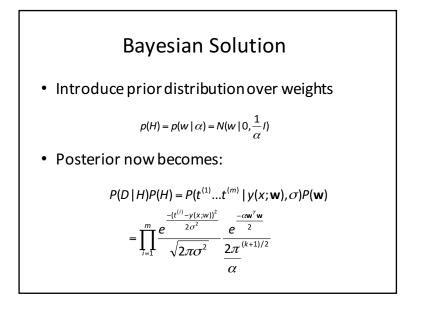
- Does it make sense to have a P(H) for Gaussians?
- Yes: Corresponds to some prior knowledge about the mean or variance
- Would like this knowledge to have a mathematically convenient form



Maximum Likelihood Solution

$$P(D | H) = P(t^{(1)} \dots t^{(m)} | y(x; \mathbf{w}), \sigma)$$
$$= \prod_{i=1}^{m} \frac{e^{\frac{-(t^{(i)} - y(x; w))^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}$$

• ML fit for mean is just linear regression fit • ML fit for mean does not depend upon σ



Comparing Regularized Regression with Bayesian Regression

• L₂ Regularized Regression minimizes:

$$\lambda \left\| \mathbf{w} \right\|_2 + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t^{(i)})^2$$

• Bayesian Regression maximizes:

$$\prod_{j=1}^{m} \frac{e^{\frac{-(t^{(i)}-y(x;w))^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} \frac{e^{\frac{-\alpha \mathbf{w}^T \mathbf{w}}{2}}}{\frac{2\pi}{\alpha}}$$

• Observation: Take log of Bayesian regression criterion and these become identical (up to constants) with λ = α .

What L₂ Regularization Does

- Also known as
 - "shrinkage"
 - Tikhanov Regularization

$$\lambda \|\mathbf{w}\|_2 + \sum_{i=1}^M (y(x_i;\mathbf{w}) - t_i)^2$$

- Trades performance on training set for lower parameter values
- Squaring favors lots of small weights over a few large ones

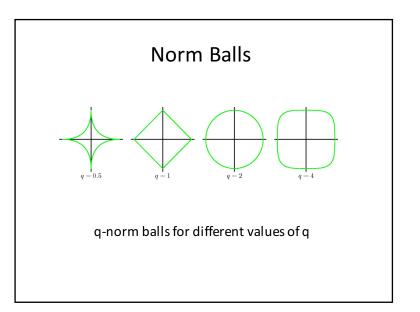
LASSO

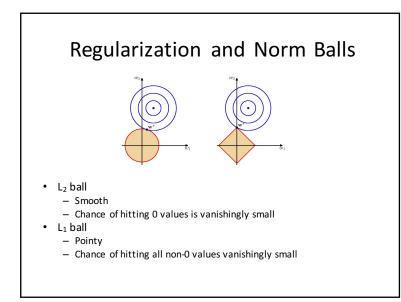
• The general form of regularized regression:

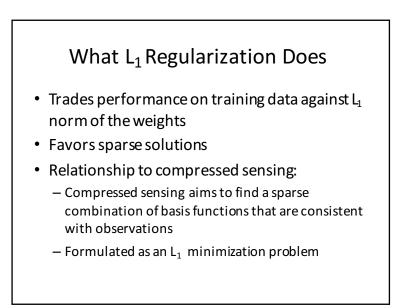
$$\lambda f(\|\mathbf{w}\|) + \sum_{i=1}^{M} (y(x^{(i)}; \mathbf{w}) - t_i)^2$$

• What if we used the 1-norm instead 2-norm for f:

$$\boldsymbol{\lambda} \left\| \boldsymbol{\mathsf{w}} \right\|_1 + \sum_{i=1}^M (\boldsymbol{y}(\boldsymbol{x}^{(i)};\boldsymbol{\mathsf{w}}) - \boldsymbol{t}^{(i)})^2$$







Implementing LASSO

- Several different approaches are possible:
 - Minimize weighted sum of training error and L1 norm on weights
 - Minimize training error subject to a strict bound on L1 norm of weights
- Both can easily be implemented as a convex program
- Also possible to solve incrementally using an algorithm called LARS

Working with 1-norm

- Suppose you want to minimize the 1-norm of a vector **x** within a linear program
- Minimize: $\sum_{i} e_{i}$
- Subject to: $\forall i : e_i \ge x_i$

 $: e_i \ge -X_i$

Bayesian Interpretation

• Note that we can always come up with a Bayesian interpretation of any regularization parameter f:

$$\lambda f(\left\|\mathbf{w}\right\|) + \sum_{i=1}^{M} (y(x^{(i)};\mathbf{w}) - t_i)^2$$

- Assume Gaussian noise
- Choose a prior on the weights which differentiates to f
- Lasso = assumption of Laplace (double exponential) distribution: $p(x \mid \mu, b) = \frac{1}{\mu} e^{-\frac{|x-\mu|}{b}}$

Bayesian vs. Non-Bayesian Regularization

- Is there really a difference?
- Bayesian view is arguably more justified, but
- Can't we always find a Bayesian interpretation of anything by taking an integral and calling it a prior?
- But do all priors have frequentist counterparts?
- What about hyper-priors?
 - Priors on priors
 - Actually makes sense if # of parameters is decreasing
 - Actually works!

More thoughts on Bayesian approaches

- Priors open the door to a rich and potentially well motivated way to introduce prior knowledge
- Hyperpriors may reduce or completely eliminate the need for cross validation
- Main drawback: Many priors do not reduce to clean optimization problems

Which is better L_1 or L_2 ?

- No clear winner
- L₂:
 - Easier to implement
 - Sometimes gives better performance on test data
- L₁:
 - More expensive (no direct solution)
 - Gives more understandable answers
 - Good choice if you have reason to believe the true answer is sparse

Why not L_0 norm?

- L₀ norm is the best norm to use for sparseness
- Counts number of non-zero parameters
- Problem: This is not tractable
- In many scenarios, e.g. compressed sensing, it has been shown the L₁ is a reasonable approximation to L₀

Other ways to get sparseness

- Forward selection:
 - Start with a small feature set
 - Gradually add features until performance (checked with cross validation) stops improving
- Backward elimination:
 - Start with all features
 - Gradually remove features
- Issues:
 - Both methods can be slow
 - Both methods are greedy

Conclusions

- Regularization trades training set performance against solution complexity
- Can reduce the need for cross validation, but
 - Regularization parameters still must be chosen
 - Hyperpriors might help here
- L₂ regularization favors many small weights
- L₁ regularization favors few/sparse weights
- L_2 and L_1 both have Bayesian counterparts