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What is the Best Choice of Polynomial?

Noisy Source Data
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Degree 3 Fit

Degree 9 Fit

Observations

Degree 3 isthe best match to the source
Degree 9 isthe best match to the samples
* We call this over-fitting

* Performance on test data:

—=6— Training
—6— Test

What went wrong?

* Isthe problem abad choice of polynomial?
Isthe problem that we don’t have enough data?

* Answer: Yes
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Methods for Choosing Features

* Crossvalidation

* Regularization
— Non-Bayesian (L,, L,, etc.)
— Bayesian

Cross Validation

* Suppose we have many possible hypothesis
spaces, e.g., different degree polynomials

* Recall our empirical performance results:

—e— Training
—e— Test

* Why notusethe datato find min of the red curve?

Implementing Cross Validation

* Many possible approaches to cross validation

* Typical approach divides data into k equally sized chunks:
— Do kinstances of learning
— For each instance hold out 1/k of the data
— Train on (k-1)/k fraction of the data
— Test on held out data
— Average results

* (Can also sample subsets of data with replacement

* Cross validation can be used to search range of hypothesis
classes to find where overfitting starts

Problems with Cross Validation

* Cross validation is a sound method, but requires a lot of data
and/or is slow

* Must trade off two factors:
— Want enough data within each run
— Want to average over enough trials

* With scarce data:
— Choose k close to n
— Almost as many learning problems asdata points

e With abundant data (then why are you doing cross validation?)
— Choose k = a small constant, e.g, 10

— Not too painful if you have alot of parallel computing resources anda
lot of data, e.g., if you are Google
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Regularization

* Cross validation mayalso be impractical if range
of hypothesis classes is not easilyenumerated a
searched iteratively

* Regularization aims to avoid overfitting, while
— Avoiding speed penalty of cross validation
— Not assuming an ordering on hypothesis spaces

* ...but you still need to do some kind of cross-
validation in the end.

Regularization

Idea: Penalize overly complicated answers
Ordinaryregression minimizes:

M .
3yxw) -t
=1
L, Regularized regression minimizes:

M
Alwl, + E(y(x“’;w) —t"y?
=1

Note: May exclude constants formthenorm

L, Regularization: Why?

M=9

M
Alwl, + E(y(x“);w) —t"y?
=1

1

* For polynomials, extreme curves typically
require extreme values

* In general, balances using full expressiveness
of hypothesis space with performance

* Problem: Howto choose A (crossvalidation?)

The L, Regularized Solution
* Minimize:
A, + 3 ylxw) - e

* Set gradientto 0, solvefor wfor features ®:
w=(D' D+ ) Dt
* Compare with unregularized solution

w=(P P)'P't

10/25/16



A Bayesian Perspective

Suppose we have a space of possible hypotheses H
Which hypothesis has the highest posterior:
P(D|H)P(H)

P(D)
P(D) does not depend on H; maximize numerator

P(H|D)=

Uniform P(H) is called Maximum Likelihood solution
(model for which data has highest prob.)

P(H) can be used for regularization

Maximum Likelihood

* For many models, the empirical mean is also
the maximum likelihood solution
* Suppose:
— Datanormally distributed
— Unknown mean, variance
— 1ID samples

P(D|H)=P@"..1" | u,0)

D _uy?
20

m e o 2
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Priors for Gaussians

Recall Bayes rule:
P(D|H)P(H)

P(H | D) = D)

Does it make sense to have a P(H) for Gaussians?
Yes: Correspondstosome prior knowledge
about the mean or variance

Would like this knowledge to have a
mathematically convenient form

Bayesian Regression

* Assumethat, given x, noise is Gaussian
* Homoscedastic noise model

y(xo, w)

p(t|xo, w, 3)

To xT
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Maximum Likelihood Solution

P(D|H)=PEt™M..t™ | y(x;w),0)

-t~y (o))
m e 207
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* ML fit for mean is just linear regression fit
* ML fit for mean does not depend upon o

Bayesian Solution

* Introduce priordistribution over weights
1
p(H)=p(w|a)=N(w|0,—)
04
* Posterior now becomes:

P(D|H)P(H) = P(t™...t" | y(x; w),o)P(w)

-(t"-yw)? —aw'w
m_e 207 e 2
= n (k+1)/2
-1 N2mo' 27
(04

Comparing Regularized Regression
with Bayesian Regresion

* L, Regularized Regression minimizes:

AHWHZ + i(y(x”’;w) gy
i1

* Bayesian Regression maximizes:

-t -y(xw)®  —aw’w
m_ e 20 e 2
(k+1)/2
-1 2r0° 27
(04

* Observation: Take log of Bayesian regression criterion and
these become identical (up to constants) with A=c..

What L, Regularization Does

* Alsoknown as
— “shrinkage”
— Tikhanov Regularization

M
Awl, + ¥ (vlx;w) -,
i=1

* Trades performance on training set for lower
parameter values

* Squaring favors lots of small weights over a
fewlargeones
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LASSO

* The general form of regularized regression:

2wl + Y (yix;w) ~t,)?

* What if we used the 1-norminstead 2-norm
for f:

M
/1HwH1 + E(y(x(');w) —t")?
i=1

Norm Balls

g-norm balls for different values of q

Regularization and Norm Balls

e L, ball
— Smooth

— Chance of hitting 0 values is vanishingly small
e Lyball

— Pointy
— Chance of hitting all non-0 values vanishingly small

What L; Regularization Does

* Trades performance on training data against L,
norm of the weights

* Favorssparsesolutions

* Relationship to compressed sensing:

— Compressed sensing aims to find a sparse

combination of basis functions that are consistent
with observations

— Formulated asan L; minimization problem
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Implementing LASSO

* Several different approaches are possible:

— Minimize weighted sum of training error and L1 norm
on weights

— Minimize training error subject to a strict bound on L1
norm of weights

* Both can easily be implemented as a convex
program

* Also possible to solve incrementally using an
algorithm called LARS

Working with 1-norm

* Supposeyou wantto minimizethe 1-norm of
a vector x within a linear program

* Minimize: Ee,

* Subjectto: vj.p =y

e =—X,

1 1

Bayesian Interpretation

* Note that we can always come up with a Bayesian
interpretation of any regularization parameter f:

A (wi)+ 3 (vx s w) -t,)?

* Assume Gaussian noise
* Choose a prior on the weights which
differentiatestof

* Lasso=assumption of Laplace (double

exponential) distribution: 1 e
p(xl‘u,b)=ge b

Bayesian vs. Non-Bayesian Regularization

* Istherereally a difference?
* Bayesian view is arguably more justified, but

* Can’t we always find a Bayesianinterpretation of
anything by taking an integral and calling it a prior?

* But do all priors have frequentist counterparts?

* What about hyper-priors?
— Priors on priors
— Actually makes senseif # of parametersis decreasing
— Actually works!
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More thoughts on Bayesian approaches

* Priorsopenthe door to a rich and potentially
well motivated way to introduce prior
knowledge

* Hyperpriors may reduce or completely
eliminate the need for cross validation

* Main drawback: Many priors do not reduce to
clean optimization problems

Which is better L; or L,?

No clear winner

L,:

— Easier to implement

— Sometimes gives better performance on test data
L;:

— More expensive (no direct solution)

— Gives more understandable answers

— Good choiceifyou havereason to believe the true
answer issparse

Why not Lo norm?

L, normis the best normto use for sparseness

Counts number of non-zero parameters
Problem: This is not tractable

* In many scenarios, e.g. compressed sensing, it
has been shown the L, is a reasonable
approximationto L,

Other ways to get sparseness

Forward selection:
— Start with a small feature set

— Gradually add features until performance (checked
with cross validation) stops improving

Backward elimination:

— Start with all features

— Gradually remove features
Issues:

— Both methods can be slow
— Both methods are greedy
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Conclusions

Regularization trades training set performance
against solution complexity

Can reduce the need for cross validation, but
— Regularization parameters still must be chosen
— Hyperpriors might help here

L, regularization favors many small weights
L, regularization favors few/sparse weights
L, and L; both have Bayesian counterparts
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