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Choosing	Predictors

CPS	570
Ron	Parr

Regression	 figures	provided	by	Christopher	Bishop	and	©	2007	Christopher	Bishop

What	is	the	Best	Choice	of	Polynomial?

Noisy	Source	Data

Degree	 0	Fit Degree	1	Fit
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Degree	 3	Fit Degree	9	Fit

Observations

• Degree	 3	is	the	best	match	to	the	source
• Degree	 9	is	the	best	match	to	the	samples
• We	call	this	over-fitting
• Performance	on	test	data:

What	went	wrong?

• Is	the	problem	a	bad	choice	of	polynomial?
• Is	the	problem	that	we	don’t	have	enough	data?
• Answer:		Yes	
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Methods	 for	Choosing	 Features

• Cross	validation

• Regularization
– Non-Bayesian	 (L1,	L2,	etc.)
– Bayesian

Cross	Validation

• Suppose	we	have	many	possible	hypothesis	
spaces,	e.g.,	different	degree	polynomials

• Recall	our	empirical	performance	results:

• Why	not	use	the	data	to	find	min	of	the	red	curve?

Implementing	 Cross	Validation
• Many	possible	approaches	 to	cross	validation

• Typical	approach	 divides	data	into	 k	equally	sized	chunks:
– Do	k	instances	of	learning
– For	each	instance	hold	out	1/k	of	the	data
– Train	on	(k-1)/k	fraction	of	the	data
– Test	on	held	out	data
– Average	 results

• Can	also	sample	subsets	of	data	with	replacement

• Cross	validation	 can	be	used	to	search	range	of	hypothesis	
classes	to	find	 where	overfitting starts

Problems	with	Cross	Validation
• Cross	validation	is	a	sound	method,	but	requires	a	lot	of	data	

and/or	is	slow

• Must	trade	off	two	factors:
– Want	enough	data	within	each	run
– Want	to	average	over	enough	trials

• With	scarce	data:
– Choose	k	close	to	n
– Almost	as	many	learning	problems	as	data	points

• With	abundant	data	(then	why	are	you	doing	cross	validation?)
– Choose	k	=	a	small	constant,	e.g.,	10
– Not	too	painful	if	you	have	a	lot	of	parallel	computing	resources	and	a	

lot	of	data,	e.g.,	if	you	are	Google
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Regularization
• Cross	validation	may	also	be	impractical	if	range	
of	hypothesis	classes	is	not	easily	enumerated	a	
searched	iteratively

• Regularization	aims	to	avoid	overfitting,	while
– Avoiding	 speed	 penalty	 of	cross	 validation
– Not	 assuming	 an	ordering	 on	hypothesis	 spaces

• …but	you	still	need	to	do	some	kind	of	cross-
validation	in	the	end.

Regularization

• Idea:		Penalize	overly	complicated	answers
• Ordinary	regression	minimizes:

• L2	Regularized	regression	minimizes:

• Note:	May	exclude	constants	form	the	norm
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L2	Regularization:	 	Why?

• For	polynomials,	extreme	curves	typically	
require	extreme	values

• In	general,	balances	using	full	expressiveness	
of	hypothesis	space	with	performance

• Problem:		How	to	choose	λ (cross	validation?)
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The	L2	Regularized	Solution

• Minimize:

• Set	gradient	to	0,	solve	for	w	for	features	Φ:

• Compare	with	unregularized solution
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A	Bayesian	 Perspective

• Suppose	we	have	a	space	of	possible	hypotheses	H
• Which	hypothesis	has	the	highest	posterior:

• P(D)	does	not	depend	on	H;	maximize	numerator
• Uniform	P(H)	is	called	Maximum	Likelihood	solution	
(model	for	which	data	has	highest	prob.)

• P(H)	can	be	used	for	regularization
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DP
HPHDPDHP =

Maximum	Likelihood

• For	many	models,	the	empirical	mean	is	also	
the	maximum	likelihood	solution

• Suppose:
– Data	normally	distributed
– Unknown	mean,	variance
– IID	samples
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Priors	for	Gaussians

• Recall	Bayes rule:

• Does	it	make	sense	to	have	a	P(H)	for	Gaussians?
• Yes:	 	Corresponds	to	some	prior	knowledge	
about	the	mean	or	variance

• Would	like	this	knowledge	to	have	a	
mathematically	 convenient	form
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Bayesian	Regression
• Assume	that,	given	x,	noise	is	Gaussian
• Homoscedastic noise	model
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Maximum	Likelihood	 Solution
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•ML	fit	for	mean	 is	just	 linear	 regression	 fit
•ML	fit	for	mean	 does	not	depend	 upon	σ

Bayesian	Solution

• Introduce	prior	distribution	over	weights

• Posterior	now	becomes:
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Comparing	Regularized	Regression	
with	Bayesian	Regresion

• L2	 	Regularized	Regression	minimizes:

• Bayesian	Regression	maximizes:

• Observation:		Take	log	of	Bayesian	regression	criterion	and	
these	become	identical	(up	to	constants)	with	λ=α.
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What	L2	Regularization	Does

• Also	known	as
– “shrinkage”
– Tikhanov Regularization

• Trades	performance	on	training	set	for	lower	
parameter	values

• Squaring	favors	lots	of	small	weights	over	a	
few	large	ones
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LASSO

• The	general	form	of	regularized	regression:

• What	if	we	used	the	1-norm	instead	2-norm	
for	f:
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Norm	Balls

q-norm	balls	for	different	values	of	q

Regularization	 and	Norm	Balls

• L2 ball
– Smooth
– Chance	 of	hitting	0	values	is	vanishingly	small

• L1 ball
– Pointy
– Chance	 of	hitting	all	non-0	values	vanishingly	small

What	L1	Regularization	Does

• Trades	performance	on	training	data	against	L1	
norm	of	the	weights

• Favors	sparse	solutions
• Relationship	to	compressed	sensing:
– Compressed	sensing	aims	to	find	a	sparse	
combination	of	basis	functions	that	are	consistent	
with	observations

– Formulated	as	an	L1		minimization	problem
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Implementing	 LASSO

• Several	different	approaches	are	possible:
– Minimize	 weighted	 sum	 of	training	 error	 and	L1	norm	
on	weights

– Minimize	 training	 error	 subject	 to	a	strict	 bound	 on	 L1	
norm	 of	weights

• Both	can	easily	be	implemented	as	a	convex	
program

• Also	possible	to	solve	incrementally	using	an	
algorithm	called	LARS

Working	with	1-norm

• Suppose	you	want	to	minimize	the	1-norm	of	
a	vector	xwithin	a	linear	program

• Minimize:	

• Subject	to:
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Bayesian	 Interpretation

• Note	that	we	can	always	come	up	with	a	Bayesian	
interpretation	of	any	regularization	parameter	f:

• Assume	Gaussian	noise
• Choose	a	prior	on	 the	weights	which	
differentiates	to	f

• Lasso	=	assumption	of	Laplace	(double	
exponential)	distribution:
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Bayesian	vs.	Non-Bayesian	Regularization

• Is	there	really	a	difference?
• Bayesian	view	is	arguably	more	justified,	but
• Can’t	we	always	find	a	Bayesian	interpretation	of	
anything	by	taking	an	integral	and	calling	it	a	prior?

• But	do	all	priors	have	frequentist counterparts?

• What	about	hyper-priors?
– Priors	on	priors
– Actually	makes	sense	if	#	of	parameters	is	decreasing
– Actually	works!
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More	thoughts	 on	Bayesian	 approaches

• Priors	open	the	door	to	a	rich	and	potentially	
well	motivated	way	to	introduce	prior	
knowledge

• Hyperpriorsmay	reduce	or	completely	
eliminate	the	need	for	cross	validation

• Main	drawback:		Many	priors	do	not	reduce	to	
clean	optimization	problems

Which	is	better	L1 or	L2?

• No	clear	winner
• L2:
– Easier	to	implement
– Sometimes	gives	better	performance	on	test	data

• L1:
– More	expensive	(no	direct	solution)
– Gives	more	understandable	answers
– Good	choice	if	you	have	reason	to	believe	the	true	
answer	is	sparse

Why	not	L0	norm?

• L0 norm	is	the	best	norm	to	use	for	sparseness
• Counts	number	of	non-zero	parameters
• Problem:		This	is	not	tractable

• In	many	scenarios,	e.g.	compressed	sensing,	 it	
has	been	shown	the	L1 is	a	reasonable	
approximation	to	L0

Other	ways	to	get	sparseness

• Forward	selection:
– Start	with	 a	small	feature	set
– Gradually	 add	features	until	 performance	 (checked	
with	 cross	validation)	stops	improving

• Backward	elimination:
– Start	with	 all	features
– Gradually	 remove	features

• Issues:
– Both	 methods	can	be	slow
– Both	 methods	are	greedy
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Conclusions

• Regularization	trades	training	set	performance	
against	solution	complexity

• Can	reduce	the	need	for	cross	validation,	but
– Regularization	parameters	still	must	be	 chosen
– Hyperpriors might	help	here

• L2 regularization	favors	many	small	weights
• L1 regularization	favors	few/sparse	weights
• L2 and	L1 both	have	Bayesian	counterparts


