
11/1/16

1

Deep	Learning

Ronald	Parr
CompSci 570

Estimating	the	Gradient
• Recall:	Backpropagation is	gradient	descent
• Computing	exact	gradient	of	the	loss	function	
requires	summing	over	all	training	samples

• Why	not	update	after	each	training	sample?
– Called	 online	or	 stochastic	 gradient
– Possibility	 of	more	efficient	 learning

• Suppose	you	need	only	a	small	number	of	samples	to	
estimate	the	gradient	correctly?

• Why	do	lots	of	unnecessary	computation?
– But,	 theoretically,	 ban	be	unstable	unless	you	use	a	
small	step	size

Batch/MinibatchMethods
• Find	a	sweet	spot	by	estimating	the	gradient	
using	a	subset	of	the	samples

• Randomly	sample	subsets	of	the	training	data	
and	sum	gradient	computations	over	all	samples	
in	the	subset

• Take	advantage	of	parallel	architectures	
(multicore/GPU)

• Still	requires	careful	selection	of	step	size	and	
step	size	adjustment	schedule	– art	vs.	science

Tricks	for	Speeding	Things	Up

• Second	 order	methods,	 e.g.,	Newton’s	 method	
– may	be	computationally	 intensive	 in	high	
dimensions

• Conjugate	 gradient	 is	more	computationally	
efficient,	though	 not	 yet	widely	used

• Momentum:	 Use	a	combination	 of	previous	
gradients	 to	smooth	 out	oscillations

11/1/16

2

Tricks	For	Breaking	Down	Problems

• Built	up	deep	networks	 by	 training	shallow	
networks,	 then	 feeding	 their	output	 into	new	
layers	(may	help	with	vanishing	 gradient	and	
other	 problems)	– a	form	of	“pretraining”

• Train	 the	network	 to	solve	“easier”	problems	
first,	then	 train	on	harder	 problems	–
curriculum	 learning,	 a	form	of	“shaping”

Convolutional	Neural	Networks	(CNNs)

• Championed	 by	LeCun (1998)

• Originally	used	 for	handwriting	 recognition

• Now	used	 in	state	of	the	art	systems	in	many	
computer	 vision	applications

• Well-suited	to	data	with	a	grid-like	structure

Convolutions

• What	 is	a	convolution?
• Way	to	combine	 two	functions,	 e.g.,	 x	and	w:

• Discrete	version	

𝑠 𝑡 = 	% 𝑥 𝑎 𝑤 𝑡 − 𝑎 𝑑𝑎

𝑠 𝑡 = 	+ 𝑥 𝑎 𝑤(𝑡 − 𝑎)

Entire	 Domain

Convolutions	on	Grids

• For	image	I
• Convolution	 “kernel”	 K:

𝑆 𝑖, 𝑗 =	++𝐼 𝑚,𝑛 𝐾(𝑖 −𝑚, 𝑗− 𝑛)
6

=++𝐼 𝑖 − 𝑚,𝑗 −𝑛 𝐾(𝑚, 𝑛)
677

11/1/16

3

Convolution	on	Grid	Example

CHAPTER 9. CONVOLUTIONAL NETWORKS

 a b c d

 e f g h

i j k l

w x

y z

aw + bx +

 ey + fz
aw + bx +

 ey + fz
bw + cx +

 fy + gz
bw + cx +

 fy + gz
cw + dx +

 gy + hz
cw + dx +

 gy + hz

 ew + fx +
iy + jz

 ew + fx +
iy + jz

 fw + gx +

 jy + kz

 fw + gx +

 jy + kz

 gw + hx +

 ky + lz

 gw + hx +

 ky + lz

Input

Kernel

Output

 Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict

 the output to only positions where the kernel lies entirely within the image, called “valid”

 convolution in some contexts. We draw boxes with arrows to indicate how the upper-left

 element of the output tensor is formed by applying the kernel to the corresponding

 upper-left region of the input tensor.

334

Figure	9.1	from	Deep	Learning,	Ian	Goodfellow and	Yoshua Bengio and	Aaron	Courville

Application	to	Images	&	Nets

• Images	have	huge	input	space:	1000x1000=1M
• Fully	connected	layers	=	huge	number	of	weights,	
slow	training

• Convolutional	layers	reduce	connectivity	by	
connecting	only	an	mxn window	around	each	pixel

• Use	weight	sharing to	learn	a	common	set	of	weights	
so	that	same	convolution	is	applied	everywhere

Additional	Stages

• Convolutional	stages	feed	to	detector stages

• Detectors	are	nonlinear

• Detectors	feed	to	pool	stages

• Pooling	stages	summarizing	upstream	nodes,	e.g.,	
average,	2-norm,	max	(should	we	be	worried	that	
max	isn’t	differentiable?)

Example	Convolutional	Network

INPUT
28x28

feature maps
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

OUTPUT
26@1x1

Subsampling

Convolution

Convolution

Subsampling

Convolution

From,	Convolutional	Networks	for	Images,	Speech,	and	Time-Series,	LeCun &	Bengio

N.B.:	Subsampling	=	averaging

11/1/16

4

Why	This	Works
• ConvNets use	weight	sharing	to	reduce	the	number	of	

parameters	learned	– mitigates	problems	with	big	networks

• Can	be	structured	 to	learn	scale	and	position	invariant	
feature	detectors

• Final	layers	then	combine	feature	to	learn	the	target	
function

• Can	be	viewed	as	doing	simultaneous	feature	selection	
and	classification

ConvNets in	Practice

• Most	successful	applications	still	require	some	
thought	 about	 the	stucture – not	yet	a	turnkey	
solution

• Number	of	convolutional	 layers,	form	of	
pooling	 and	detecting	units	may	be	
application	 specific

