Deep RL

Ron Parr
CompSci 570

11/24/2016

Q-Learning Review
* Want to maintain good properties of TD

* Learns good policies and optimal value function, not just the value of
a fixed policy

* Simple modification to TD that learns the optimal policy regardless of
how you act! (mostly)

Q-learning

* Recall value iteration:

V() =max, R(s,a) + 7Y P(s'| s,a)V'(s")
* Can split this into two functions: s'

Q"'(s,a) =R(s,a) + 72 P(s'|s,a)V'(s")

V™ (s) =max, Q" (s,a)

Q-learning

* Store Q values instead of a value function
* Makes selection of best action easy
* Update rule:

Qtemp (S,G) =r+ ymax,, Q’(S',G')

Q"(s,a)=(1-)Q(s,0) + Q"™ (s,0)




11/24/2016

Q-learning Properties

* Converges under same conditions as TD
* Still must visit every state infinitely often

* Separates policy you are currently following from value function
learning:

Qtemp(s,a) =r+ymax, Q"(s',a‘)

Q"(s,a)=(1-)Q(s,0) + Q"™ (s,0)

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

Value Function Representation

* Fundamental problem remains unsolved:
* TD/Q learning solves model-learning problem, but
* Large models still have large value functions
* Too expensive to store these functions
* Impossible to visit every state in large models

* Function approximation
* Use machine learning methods to generalize
* Avoid the need to visit every state

Function Approximation

* General problem: Learn function f(s)
¢ Linear regression
* Neural networks
« State aggregation (violates Markov property)

* Idea: Approximate f(s) with g(s,0)
* g is some easily computable function of s and 6
* Try to find 6 that minimizes the errorin g

Updates with Approximation

* Recall regular Q update:
Q" (s,0) =1~ &)Q'(s,0) + 2Q“™ (s,0)
* With function approximation:

Vector

/ operations

witl = wit(Q™P (s, a) — Qi (s, a; W)V, Q(s,a;w)

* Update:

Neural networks are a special case of this.




11/24/2016

Learning to play Backgammon

* Neurogammon developed in 1989 using supervised learning
* Trained NN on expert human moves
* Played at level of intermediate human player

* TD-gammon developed in 1992 using RL
* Neural network value function approximation
 TD sufficient (known model)
 Using raw board positions, learned to play as well as neurogammon
» Tesauro added carefully selected features to the network
* Then had it play 1 million games played against self
* Comparable performance to best human players

RL after TD-gammon

* For 20 years after TD-gammon, many tried to reproduce success of
combination of RL with neural networks for other domains

« Often FAILED with bad policies or weights that diverged (went to infinity)

* Community largely retreated into linear value function approximation and
focused on techniques for generating and selecting good features

* Deepmind Deep RL result causes seismic shift in community comparable or
larger to Tesauro’s result

Switch to David Silver’s Slides




