
11/24/2016

1

Deep RL
Ron Parr

CompSci 570

Q-Learning Review

• Want to maintain good properties of TD

• Learns good policies and optimal value function, not just the value of
a fixed policy

• Simple modification to TD that learns the optimal policy regardless of
how you act! (mostly)

Q-learning

• Recall value iteration:

• Can split this into two functions:
V i+1(s) =maxa R(s,a)+g P(s' | s,a)V i(s')

s'

å

Qi+1(s,a) = R(s,a)+g P(s' | s,a)V i(s')
s'

å

V i+1(s) =maxa Q
t +1(s,a)

Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

 Q
temp (s,a) = r +gmaxa ' Q

i(s',a')

 Q
i+1(s,a) = (1 -a)Qi(s,a) +aQtemp (s,a)

11/24/2016

2

Q-learning Properties

• Converges under same conditions as TD
• Still must visit every state infinitely often
• Separates policy you are currently following from value function

learning:

 Q
temp (s,a) = r +gmaxa ' Q

i(s',a')

 Q
i+1(s,a) = (1 -a)Qi(s,a) +aQtemp (s,a)

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

Value Function Representation

• Fundamental problem remains unsolved:
• TD/Q learning solves model-learning problem, but
• Large models still have large value functions
• Too expensive to store these functions
• Impossible to visit every state in large models

• Function approximation
• Use machine learning methods to generalize
• Avoid the need to visit every state

Function Approximation

• General problem: Learn function f(s)
• Linear regression
• Neural networks
• State aggregation (violates Markov property)

• Idea: Approximate f(s) with g(s,)
• g is some easily computable function of s and
• Try to find that minimizes the error in g

Updates with Approximation

• Recall regular Q update:

• With function approximation:

• Update: Vector
operations

Neural networks are a special case of this.

 Q
i+1(s,a) = (1 -a)Qi(s,a) +aQtemp (s,a)

= + ((,) − (, ;)) Q(s,a;w)

11/24/2016

3

Learning to play Backgammon

• Neurogammon developed in 1989 using supervised learning
• Trained NN on expert human moves
• Played at level of intermediate human player

• TD-gammon developed in 1992 using RL
• Neural network value function approximation
• TD sufficient (known model)
• Using raw board positions, learned to play as well as neurogammon
• Tesauro added carefully selected features to the network
• Then had it play 1 million games played against self
• Comparable performance to best human players

RL after TD-gammon

• For 20 years after TD-gammon, many tried to reproduce success of
combination of RL with neural networks for other domains

• Often FAILED with bad policies or weights that diverged (went to infinity)

• Community largely retreated into linear value function approximation and
focused on techniques for generating and selecting good features

• Deepmind Deep RL result causes seismic shift in community comparable or
larger to Tesauro’s result

Switch to David Silver’s Slides

