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Suppose we’re in 1-dimension

Easy tofind a
linear separator
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Harder 1-dimensional dataset

What can be done
about this?
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Harder 1-dimensiomal dataset

Remember how permitting
non-linear basis functions

. made linear regression so
much nicer?

Let’s permit them here too

® = (x,x?)
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Harder 1-dimensional dataset

Now linearly separable in
the new feature space

But, what if the right
feature set isn’t obvious

® = (x,x2)
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Motivation for non-linear Classifiers

® Linear methods are “weak”

— Make strong assumptions

— Can only express relatively simple functions of inputs

¢ Comingup with good features can be hard

¢ Why not make the classifier do more work for us?
— What does the space of hypotheses look like?

— How do we navigate in this space?

Neural Network Motivation

¢ Human brains are only known example of actual intelligence
¢ |ndividual neurons are slow, boring
® Brains succeed by using massive parallelism g r——

¢ |dea: Copy what works mJ;E

e Raises many issues:
— Is the computational metaphor suited to the computational hardware?
— How do we know if we are copying the important part?
— Are we aiming too low?

Why Neural Networks?

Maybe computers should be more brain-like:

Computers Brains
Computational Units 108gates/CPU |10" neurons
Storage Units 100bits RAM |10 neurons

10" bits HD 10" synapses
Cycle Time 10°8S 1028
Bandwidth 10" bits/s* 10™bits/s
Compute Power 10" Ops/s 10" Ops/s




Comments on Sunway TaihuLight
(world’s fastest supercomputer as of 4/12)

93 Petaflops

~10%8 Ops/s (TaihuLight) vs. 10 Ops/s (brain)

10M processor cores + GPU cores

1.3 PB RAM (1077 bits)

15 Megawatts power(>$1M/year in electricity [my estimate])

~$273M cost

More Comments on Titan

e What is wrong with this picture?
— Weight
— Size
— Power Consumption

e What is missing?
— Still can’t replicate human abilities
(though vastly exceeds human abilities in many areas)
— Are we running the wrong programs?

— Is the architecture well suited to the programs we
might need to run?

Artificial Neural Networks

Develop abstraction of function of actual neurons

Simulate large, massively parallel artificial neural
networks on conventional computers

Some have tried to build the hardware too

Try to approximate human learning, robustness to
noise, robustness to damage, etc.

Early Use of neural networks

¢ Trained to pronounce English
— Training set: Sliding window over text, sounds
— 95% accuracy on training set
— 78% accuracy on test set
e Trained to recognize handwritten digits
— >99% accuracy
¢ Trained to drive
(Pomerleau’s no-hands across America)




Neural Network Lore

Neural nets have been adopted with an almost religious fervor
within the Al community — several times

— First coming: Perceptron

— Second coming: Multilayer networks

— Third coming (present): Deep networks

Sound science behind neural networks: gradient descent
Unsound social phenomenon behind neural networks: HYPE!

Artificial Neurons
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h can be any function, but usually a smoothed step function
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Threshold Functions

h(x)=sgn(x)
(perceptron)
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h(x)=tanh(x) or 1/(1+exp(-x))
(logistic sigmoid)

Network Architectures

e Cyclicvs. Acyclic
— Cyclicistricky, butmore biologically plausible
* Hard to analyze in general
¢ May not be stable
* Need to assume latches to avoid race conditions
— Hopfield nets: special type of cyclic net useful for
associative memory
e Singlelayer (perceptron)

e Multiple layer
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Feedforward Networks

We consider acyclic networks
One or more computational layers

Entire network can be viewed as computinga complex

non-linear function
Typical uses in learning:
— Classification (usually involving complex patterns)

— General continuous function approximation

Special Case: Perceptron
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h is asimple step function (sgn)

Multilayer Networks

Once people realized how simple perceptrons were, they lost
interest in neural networks for a while
Multilayer networks turn out to be much more expressive
(with a smoothed step function)

— Use sigmoid, e.g., tanh(wx) or logistic sigmoid

— With 2 layers, can represent any continuous function

— With 3 layers, can represent many discontinuous functions

Tricky part: How to adjust the weights

Hoe

Smoothing Things Out

¢ Idea: Do gradient descent on a smooth error function
e Error function is sum of squared errors
¢ Consider a single training example first
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Calculus Reminder
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e Chain rulefor one variable:
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e For output unNits (assuming no weights on outputs)

oE
7_5 =y-t 0,-=2W,-,-Z,-
(')a i

e For hidden units
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Differentiating h

e Recall the logistic sigmoid:

e 1
h(x) = =
) l+e* 1+e™™
i 1
1-h(x) =

l1+e™ 1+e"

e Differentiating:

o . -
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Putting it together

Apply input x to network (sum for multipleinputs)
— Compute all activation levels
— Compute final output (forward pass)

Compute dfor output units
o=y-t

Backpropagate ds to hidden units
8 = £%—h( )Ew
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Compute gradient update: w o0
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Summary of Gradient Update

Gradient calculation, parameter update have
recursive formulation
Decomposes into:
— Local message passing
— No transcendentals:
e h(x)=1-h(x)2 for tanh(x)
e H'(x)=h(x)(1-h(x)) for logistic sigmoid

Highly parallelizable
Biologically plausible(?)

Celebrated backpropagation algorithm
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Good News

Can represent any continuous function with two
layers (1 hidden)

Can represent essentially any function with 3 layers
(But how many hidden nodes?)

Multilayer nets are a universal approximation
architecture with a highly parallelizable training
algorithm

Backprop Issues

Backprop =gradient descent on an error function
Function is nonlinear (= powerful)
Function is nonlinear (=local minima)

Big nets:

— Many parameters
e Many optima
¢ Slow gradient descent
e Risk of overfitting

— Biological plausibility = Electronic plausibility
Many NN experts became experts in numerical
analysis (by necessity)

Neural Network Tricks

Many gradient descent acceleration tricks

Early stopping (prevents overfitting)

Methods of enforcing transformation invariance
(e.g. if you have symmetric inputs)

— Modify error function

— Transform/augment training data

— Weight sharing

Handcrafted network architectures

NN History Through the Second Coming

e Second wave of interest in neural networks lost
research momentum in the 1990s—though still
continued to enjoy many practical applications

¢ Neural network tricks were not sufficient to
overcome competing methods:

— Support vector machines

— Clever feature selection methods wrapped around
simple or linear methods

e 2000-2010 was an era of linear + special sauce
¢ What changed?




Deep Networks

* Not a learning algorithm, but a family of techniques
— Training sometimes done in stages, rather than monolithically, with
different layers of the network getting training separately

— Sometimes combines ideas from supervised and unsupervised learning,
with middle layers trained to do some kind of feature compression

— Clever crafting of network structure — convolutional nets

e Exploit massive computational power
— Parallel computing
— GPU computing
— Very large data sets (can reduce overfitting)

Deep Networks Today

e Still on the upward swing of the hype pendulum
e State of theart performance for many tasks:

— Speech recognition
— Object recognition
— Playing video games

Controversial:

Hype, hype, hype! (but it really does work well in many cases!)
Theory lags practice

Collection of tricks, not an entirely a science yet

Results are not human-interpretable

Conclusions

Neural nets are a general function
approximation architecture

Gradient has nice properties, permitting
highly parallelizable training

Historically wild swings in popularity

Currently on upswing due to clever changes
in training methods, use of parallel
computation, and large data sets




