
1

Neural	Networks

CPS	570
Ron	Parr

Suppose	we’re	in	1-dimension

Easy	to	find	a	
linear	separator

x=0

Copyright	©	2001,	2003,	Andrew	W.	Moore

Harder	1-dimensional	dataset

What	can	be	done	
about	this?

x=0

Copyright	©	2001,	2003,	Andrew	W.	Moore

Harder	1-dimensional	dataset

Remember	how	permitting	
non-linear	basis	functions	
made	linear	regression	so	
much	nicer?

Let’s	permit	them	here	too

x=0

Copyright	©	2001,	2003,	Andrew	W.	Moore

2

Harder	1-dimensional	dataset

Now	 linearly	 separable	 in	
the	new	 feature	 space

But,	what	 if	the	 right	
feature	 set	 isn’t	obvious

x=0

Copyright	©	2001,	2003,	Andrew	W.	Moore

Motivation	for	non-linear	Classifiers

• Linear	methods	are	“weak”
– Make	strong	assumptions
– Can	only	express	 relatively	 simple	 functions	of	inputs

• Coming	up	with	good	features	can	be	hard

• Why	not	make	the	classifier	do	more	work	for	us?
– What	does	the	space	of	hypotheses	look	like?
– How	do	we	 navigate	 in	this	space?

Neural	Network	 Motivation

• Human	brains	are	only	known	example	of	actual	intelligence
• Individual	neurons	are	slow,	boring
• Brains	succeed	by	using	massive	parallelism
• Idea:		Copy	what	works

• Raises	many	issues:
– Is	the	computational	metaphor	suited	to	the	computational	hardware?
– How	do	we	know	if	we	are	copying	the	important	part?
– Are	we	aiming	too	low?

Why	Neural	Networks?
Maybe	computers	should	be	more	brain-like:

Computers Brains

Computational Units 108 gates/CPU 1011 neurons

Storage Units 1010 bits RAM
1013 bits HD

1011 neurons
1014 synapses

Cycle Time 10-9 S 10-3 S

Bandwidth 1010 bits/s* 1014 bits/s

Compute Power 1010 Ops/s 1014 Ops/s

3

Comments	on	Sunway	 TaihuLight
(world’s	 fastest	 supercomputer	 as	 of	 4/12)

• 93	Petaflops

• ~1018 Ops/s	 (TaihuLight)	 vs.	 	1014 Ops/s	 (brain)

• 10M	processor	 cores	+	GPU	cores

• 1.3	PB	RAM	(1017 bits)

• 15	Megawatts	 power(>$1M/year	 in	electricity	 [my	estimate])

• ~$273M	cost

More	Comments	on	Titan

• What	is	wrong	with	this	picture?
– Weight
– Size
– Power	Consumption

• What	is	missing?
– Still	 can’t	 replicate	 human	abilities	

(though	vastly	exceeds	human	abilities	in	many	areas)

– Are	we	 running	the	wrong	programs?
– Is	the	architecture	 well	 suited	to	 the	programs	 we	
might	need	 to	run?

Artificial	Neural	Networks

• Develop	abstraction of	function	of	actual	neurons

• Simulate	large,	massively	parallel	artificial	neural	
networks	on	conventional	computers

• Some	have	 tried	to	build	the	hardware	 too

• Try	to	approximate	human	learning,	robustness	 to	
noise,	robustness	 to	damage,	 etc.

Early	Use	of	neural	networks

• Trained	to	pronounce	English
– Training	set:	Sliding	window	over	text,	sounds
– 95%	accuracy	on	training	set
– 78%	accuracy	on	test	set

• Trained	to	recognize	handwritten	digits
– >99%	accuracy

• Trained	to	drive	
(Pomerleau’s	no-hands	across	America)

4

Neural	Network	 Lore

• Neural	 nets	have	 been	 adopted	 with	an	almost	 religious	 fervor	
within	 the	AI	 community	 – several	 times
– First	coming:	Perceptron
– Second	 coming:	Multilayer	networks
– Third	coming	 (present):	 Deep	networks

• Sound	science	 behind	 neural	 networks:	 gradient	 descent
• Unsound	social	phenomenon	 behind	neural	 networks:	 HYPE!

Artificial	Neurons

node/
neuron

xj wj,i zi

!!

€

ai = h(w j,ix j
j
∑)

h	can	be	any	function,	but	usually	a	smoothed	step	function

h

Threshold	 Functions

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10

-1

-0 .5

0

0 .5

1

-1 0 -5 0 5 1 0

h(x)=tanh(x)	or	1/(1+exp(-x))
(logistic	sigmoid)

h(x)=sgn(x)
(perceptron)

Network	Architectures

• Cyclic	vs.	Acyclic
– Cyclic	is	tricky,	but	more	biologically	plausible

• Hard	to	analyze	in	general
• May	not	be	stable
• Need	to	assume	latches	to	avoid	race	conditions

– Hopfield	nets:		special	type	of	cyclic	net	useful	for	
associative	memory

• Single	layer	(perceptron)
• Multiple	layer

5

Feedforward	 Networks

• We	consider	acyclic	networks
• One	 or	more	computational	layers
• Entire	network	can	be	 viewed	as	computing	a	complex	
non-linear	function

• Typical	uses	 in	learning:
– Classification	 (usually	 involving	 complex	 patterns)
– General	 continuous	 function	approximation

Special	Case:	Perceptron

node/
neuron

xj wj

Y

h

h	is	a	simple	step	 function	(sgn)

Multilayer	Networks

• Once	people	realized	how	simple	perceptrons	were,	they	lost	
interest	in	neural	networks	for	a	while

• Multilayer	networks	turn	out	to	be	much	more	expressive
(with	a	smoothed	step	function)
– Use	sigmoid,	 e.g.,	tanh(wTx)	 or	logistic	sigmoid
– With	2	layers,	can	represent	any	continuous	function
– With	3	layers,	can	represent	many	discontinuous	 functions

• Tricky	part:		How	to	adjust	the	weights

Smoothing	Things	Out
• Idea:		Do	gradient	descent	on	a	smooth	error	function
• Error	function	is	sum	of	squared	errors
• Consider	a	single	training	example	first

!!!!

€

E = 0.5error(X (i),w)2

∂E
∂wij

=
∂E
∂a j

∂a j

∂wij

∂E
∂a j

= δ j

∂a j

∂wij

= zi

∂E
∂wij

= δ jzi

i
j

wij

ai
!!

€

a j = wijzi
i
∑

zi zj

!!

€

z j = h(a j)

6

Calculus	Reminder

• Chain	rule	for	one	variable:

• Chain	rule	for:		

• For	k=1,	m=1

∂f g
∂x

=
∂f
∂g

∂g
∂x

f :ℜn →ℜk ,g :ℜm →ℜn

Jx (f !g)= Jg(x)(f)Jx (g)= k×n() n×m()

Jx (f g)=
∂f

∂g(x)ii=1

n

∑
∂g(x)i
∂x

Propagating	Errors

• For	output	units	(assuming	no	weights	on	outputs)

• For	hidden	units
!!

€

∂E
∂a j

= δ j = y − t

!!

€

∂E
∂ai

= δ i =
∂E
∂akk

∑ ∂ak

∂ai

=
∂E
∂akk

∑ wki
∂hi
∂ai

= h'(ai) wki
k
∑ δk

i
jwijai

!!

€

a j = wijzi
i
∑

zj=output

!!

€

z j = f (a j)

All	upstream	nodes	from	i

Chain	rule

∂E
∂wij

=
∂E
∂aj

∂aj

∂wij

=δ jzi

∂E
∂aj

=δ j ,"""
∂aj

∂wij

= zi ,""""

Differentiating	 h

• Recall	the	logistic	sigmoid:

• Differentiating:

!!!!!!

€

h(x) =
ex

1+ ex =
1

1+ e−x

!!!!!!

€

1 − h(x) =
e−x

1+ e−x
=

1
1+ ex

!!!!

€

h'(x) =
e−x

(1+ e−x)2
=

1
(1+ e−x)

e−x

(1+ e−x)
= h(x)(1 − h(x))

Putting	it	together

• Apply	input	x to	network	(sum	for	multiple	inputs)
– Compute	all	activation	levels
– Compute	final	output	(forward	pass)

• Compute	δ for	output	units

• Backpropagate	δs	to	hidden	units

• Compute	gradient	update:

!!

€

δ = y − t

!!

€

δ j =
∂E
∂akk

∑ ∂ak

∂a j

= h'(a j) wkj
k
∑ δk

!!

€

∂E
∂wij

= δ jai

7

Summary	of	Gradient	 Update
• Gradient	calculation,	parameter	update	have	
recursive	formulation

• Decomposes	 into:
– Local	message	 passing
– No	transcendentals:

• h’(x)=1-h(x)2 for	 tanh(x)
• H’(x)=h(x)(1-h(x))	 for	logistic	sigmoid

• Highly	parallelizable
• Biologically	plausible(?)

• Celebrated	backpropagation algorithm

8

9

Good	News

• Can	represent	 any	continuous	function	with	two	
layers	 (1	hidden)

• Can	represent	 essentially	 any	function	with	3	layers
• (But	how	many	hidden	nodes?)

• Multilayer	nets	are	a	universal	approximation	
architecture	with	a	highly	parallelizable	training	
algorithm

Backprop	Issues

• Backprop	=	gradient	descent	on	an	error	function
• Function	is	nonlinear	(=	powerful)
• Function	is	nonlinear	(=	local	minima)
• Big	nets:

– Many	parameters
• Many	optima
• Slow	gradient	descent
• Risk	of	overfitting

– Biological	plausibility	≠ Electronic	plausibility
• Many	NN	experts	became	experts	in	numerical	
analysis	(by	necessity)

Neural	Network	 Tricks

• Many	gradient	descent	acceleration	tricks
• Early	stopping	(prevents	overfitting)
• Methods	of	enforcing	transformation	invariance	
(e.g.	 if	you	have	symmetric	 inputs)
– Modify	error	function
– Transform/augment	 training	data
– Weight	sharing

• Handcrafted	network	architectures	

NN	History	Through	the	Second	Coming

• Second	wave	of	interest	in	neural	networks	lost	
research	momentum	in	the	1990s	– though	still	
continued	to	enjoy	many	practical	applications

• Neural	network	tricks	were	not	sufficient	to	
overcome	competing	methods:
– Support	vector	machines
– Clever	feature	selection	methods	wrapped	around	
simple	or	linear	methods

• 2000-2010	was	an	era	of	linear	+	special	sauce
• What	changed?

10

Deep	 Networks

• Not	a	 learning	 algorithm,	 but	a	 family	 of	techniques
– Training	sometimes	done	 in	stages,	rather	than	monolithically,	with	

different	 layers	of	the	network	getting	training	separately
– Sometimes	combines	 ideas	from	 supervised	and	unsupervised	 learning,	

with	middle	layers	trained	to	do	some	kind	of	feature	compression
– Clever	crafting	of	network	structure	– convolutional	nets

• Exploit	 massive	 computational	 power
– Parallel	computing
– GPU	computing
– Very	large	data	sets	(can	reduce	overfitting)

Deep	Networks	Today

• Still	on	the	upward	swing	of	the	hype	pendulum
• State	 of	the	art	performance	 for	many	 tasks:

– Speech	recognition
– Object	recognition
– Playing	video	games

• Controversial:
– Hype,	hype,	hype!	(but	it	really	does	work	well	in	many	cases!)
– Theory	lags	practice
– Collection	of	tricks,	not	an	entirely	a	science	yet
– Results	are	not	human-interpretable

Conclusions

• Neural	nets	are	a	general	function	
approximation	architecture

• Gradient	has	nice	properties,	permitting	
highly	parallelizable	training

• Historically	wild	swings	in	popularity
• Currently	on	upswing	due	to	clever	changes	
in	training	methods,	use	of	parallel	
computation,	and	large	data	sets

