

Neural Network Motivation

- Human brains are only known example of actual intelligence
- Individual neurons are slow, boring
- Brains succeed by using massive parallelism
- Idea: Copy what works

- Raises many issues:
 - Is the computational metaphor suited to the computational hardware?
 - How do we know if we are copying the important part?
 - Are we aiming too low?

Why Neural Networks?

Maybe computers should be more brain-like:

	Computers	Brains
Computational Units	10 ⁸ gates/CPU	10 ¹¹ neurons
Storage Units	10 ¹⁰ bits RAM	10 ¹¹ neurons
	10 ¹³ bits HD	10 ¹⁴ synapses
Cycle Time	10-9 S	10 ⁻³ S
Bandwidth	10 ¹⁰ bits/s*	10 ¹⁴ bits/s
Compute Power	10 ¹⁰ Ops/s	10 ¹⁴ Ops/s

Comments on Sunway TaihuLight (world's fastest supercomputer as of 4/12)

- 93 Petaflops
- ~10¹⁸ Ops/s (TaihuLight) vs. 10¹⁴ Ops/s (brain)
- 10M processor cores + GPU cores
- 1.3 PB RAM (10¹⁷ bits)
- 15 Megawatts power(>\$1M/year in electricity [my estimate])
- ~\$273M cost

More Comments on Titan

- What is wrong with this picture?
 - Weight
 - Size
 - Power Consumption
- What is missing?
 - Still can't replicate human abilities (though vastly exceeds human abilities in many areas)
 - Are we running the wrong programs?
 - Is the architecture well suited to the programs we might need to run?

Artificial Neural Networks

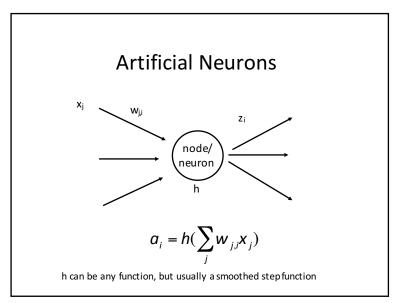
- Develop *abstraction* of function of actual neurons
- Simulate large, massively parallel artificial neural networks on conventional computers
- Some have tried to build the hardware too
- Try to approximate human learning, robustness to noise, robustness to damage, etc.

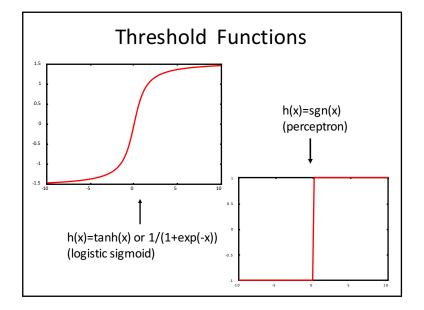
Early Use of neural networks

- Trained to pronounce English
 - Training set: Sliding window over text, sounds
 - 95% accuracy on training set
 - 78% accuracy on test set
- Trained to recognize handwritten digits
 >99% accuracy
- Trained to drive (Pomerleau's no-hands across America)

Neural Network Lore

- Neural nets have been adopted with an almost religious fervor within the Al community several times
 - First coming: Perceptron
 - Second coming: Multilayer networks
 - Third coming (present): Deep networks
- Sound science behind neural networks: gradient descent
- Unsound social phenomenon behind neural networks: HYPE!



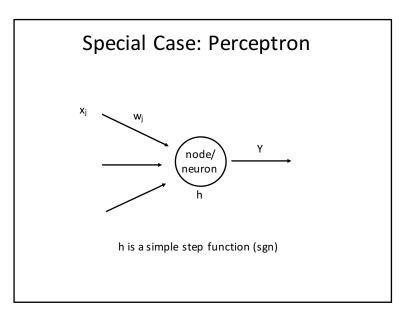


Network Architectures

- Cyclic vs. Acyclic
 - Cyclic is tricky, but more biologically plausible
 - Hard to analyze in general
 - May not be stable
 - Need to assume latches to avoid race conditions
 - Hopfield nets: special type of cyclic net useful for associative memory
- Single layer (perceptron)
- Multiple layer

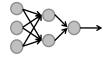
Feedforward Networks

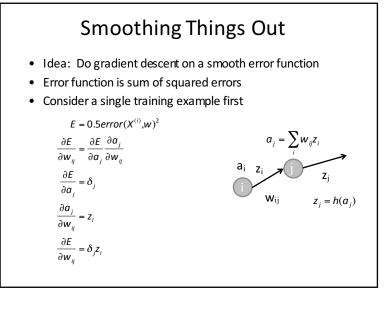
- We consider acyclic networks
- One or more computational layers
- Entire network can be viewed as computing a complex non-linear function
- Typical uses in learning:
 - Classification (usually involving complex patterns)
 - General continuous function approximation

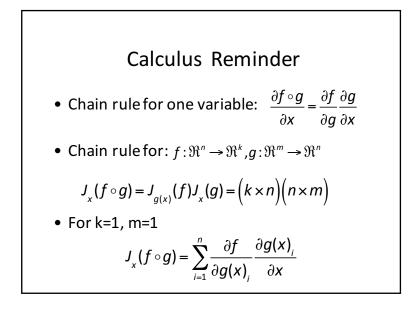


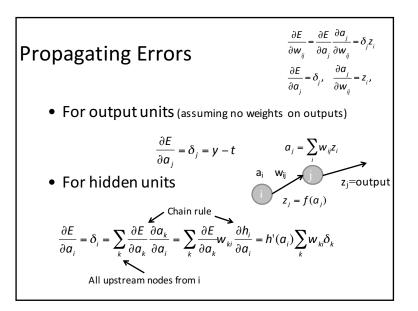
Multilayer Networks

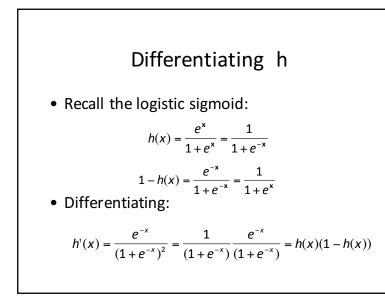
- Once people realized how simple perceptrons were, they lost interest in neural networks for a while
- Multilayer networks turn out to be much more expressive (with a smoothed step function)
 - Use sigmoid, e.g., tanh(w[™]x) or logistic sigmoid
 - With 2 layers, can represent any continuous function
 - With 3 layers, can represent many discontinuous functions
- Tricky part: How to adjust the weights

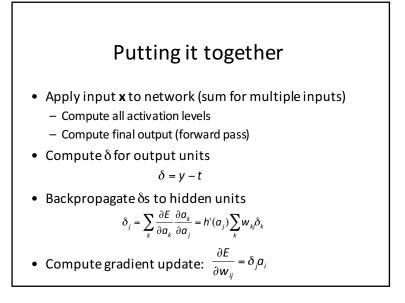






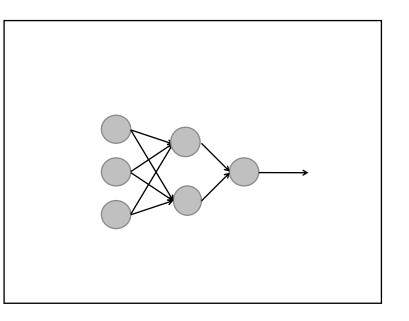


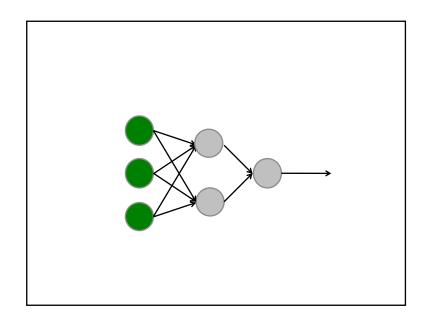


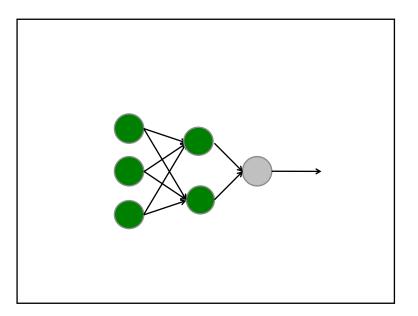


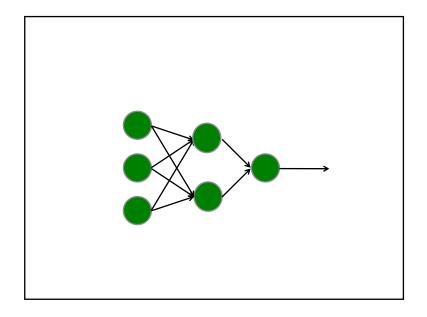
Summary of Gradient Update

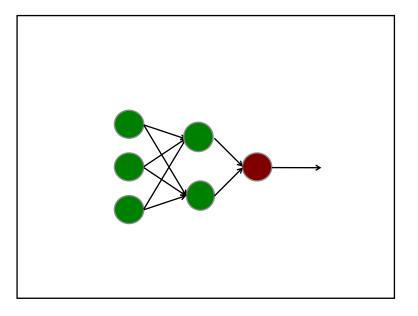
- Gradient calculation, parameter update have recursive formulation
- Decomposes into:
 - Local message passing
 - No transcendentals:
 - h'(x)=1-h(x)² for tanh(x)
 - H'(x)=h(x)(1-h(x)) for logistic sigmoid
- Highly parallelizable
- Biologically plausible(?)
- Celebrated *backpropagation* algorithm

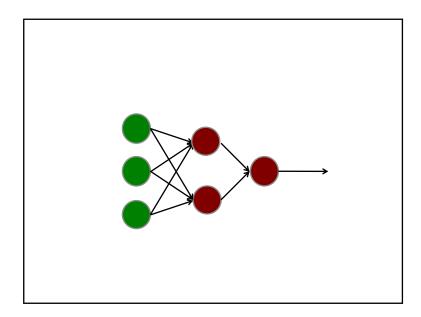


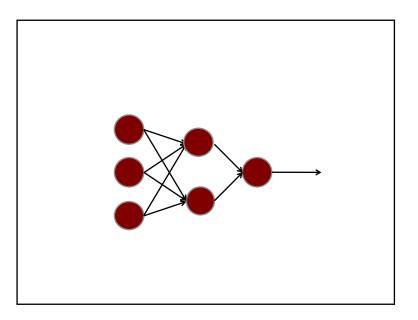












Good News

- Can represent any continuous function with two layers (1 hidden)
- Can represent essentially any function with 3 layers
- (But how many hidden nodes?)
- Multilayer nets are a universal approximation architecture with a highly parallelizable training algorithm

Backprop Issues

- Backprop = gradient descent on an error function
- Function is nonlinear (= powerful)
- Function is nonlinear (= local minima)
- Big nets:
 - Many parameters
 - Many optima
 - Slow gradient descent
 - Risk of overfitting
 - Biological plausibility ≠ Electronic plausibility
- Many NN experts became experts in numerical analysis (by necessity)

Neural Network Tricks

- Many gradient descent acceleration tricks
- Early stopping (prevents overfitting)
- Methods of enforcing transformation invariance (e.g. if you have symmetric inputs)
 - Modify error function
 - Transform/augment training data
 - Weight sharing
- Handcrafted network architectures

NN History Through the Second Coming

- Second wave of interest in neural networks lost research momentum in the 1990s – though still continued to enjoy many practical applications
- Neural network tricks were not sufficient to overcome competing methods:
 - Support vector machines
 - Clever feature selection methods wrapped around simple or linear methods
- 2000-2010 was an era of linear + special sauce
- What changed?

Deep Networks

- Not a learning algorithm, but a family of techniques
 - Training sometimes done in stages, rather than monolithically, with different layers of the network getting training separately
 - Sometimes combines ideas from supervised and unsupervised learning, with middle layers trained to do some kind of feature compression
 - Clever crafting of network structure convolutional nets
- Exploit massive computational power
 - Parallel computing
 - GPU computing
 - Very large data sets (can reduce overfitting)

Deep Networks Today

- Still on the upward swing of the hype pendulum
- State of the art performance for many tasks:
 - Speech recognition
 - Object recognition
 - Playing video games
- Controversial:
 - Hype, hype, hype! (but it really does work well in many cases!)
 - Theory lags practice
 - Collection of tricks, not an entirely a science yet
 - Results are not human-interpretable

Conclusions

- Neural nets are a general function approximation architecture
- Gradient has nice properties, permitting highly parallelizable training
- Historically wild swings in popularity
- Currently on upswing due to clever changes in training methods, use of parallel computation, and large data sets