Introduction to
Approximation Algorithms

Ron Parr
CPS 570

Covered Today
Approximationin general
Set cover
A greedyalgorithm for set cover
Submodularity

A generic, greedy algorithm exploiting
submodularity

Why use approximation?

Lots of problems we want to solve are NP-hard optimization
problems, often with associated NP-complete decision
problems

Different notions of approximation

— Search for a “pretty good” answer

— Return an optimal answer in some cases (fail in others?)

— Return an answer that is an additive factor from optimal: result
=optimal +/- ¢

— Return an answer that a multiplicative factorfrom optimal:
result/approximation=¢

— For a given resource level, achieve a lower performance value?

— For a given performance level, consume more resources?

Set Cover

Input:

— Aset of atoms: S=s;...s,

— Aset of sets: C=cy...cm

— Each set contains 1 or more atoms

Optimization question: Can you choose k elements
from Csuch thatevery element of Sisinat least one of
these k? (Thisisacalled a J)

Decision question: Exista coverofsize k or less?
NP-hard

9/13/16



Set Cover Example

olo oo @ @ @]
Q|10 Q0 0 © O

14 atoms
5 sets

Real Problems Abstracted by Set Cover

* Sensor placement:
— You have sensors to place in m different locations
— Each location can observe some fraction of your n targets
— Find the most efficient sensor allocation to seealltargets

* Buying bundles of goods
— Different vendors offer package deals on different combinations of
products (flat rate shipping)
— Buy all the products you need inthe smallest number of transactions

* Choosing advertising outlets

— Different stations (or newspapers) cover different, possibly
overlapping markets

— Try to cover markets with smallest number of ads

So, what do we do?

* Settle for a larger k?
— What ifwedon’t need the absolute smallest k?

— Isthere an algorithm that gives something close to
the smallest?

» Settle for less than full coverage
— What if we have only k resources?

— Isthere an algorithm that gives us something
closeto the best we can hope for using k?

Greedy Algorithms

* Greedyalgorithms are a generalclass of
algorithms that, loosely speaking, make a choice
that gives maximalshort term improvement,
without considering subsequent choices

* Examples of greedy behavior:

— Picking the class that is most interesting to you first
(ignoring that this might cause scheduling problems
with other classes)

— Positioning a sensor so that it sees the highest
number of targets (while ignoring subsequent choices)

9/13/16



9/13/16

Greedy Set Cover What does greedy do here?

Repeat until done*

— For each set not added, check how many ~ =
previously uncovered atoms it would add Q|0 QOO 0@

— Add the set with the 0Ol ®© © @ @

*What is “done”

— Max of k elements added, or
— All elements covered

What price greed? What price greed (2)?

Assume we have a budget of k * 0, = number of new elements covered by O;

* gi = number of new elements covered by G;
Optimal picks: 0;...0, covering n atoms

* N =0;+0,+...40;
Greedy picks G;...Gy, covering x atoms * X =g+gy+.. 8k

What is the relationship between x and n?




What price greed (3)?

Suppose 0;>g;

Q: Whydidn’t greedy pick O;?

A: The only reason would be if greedy already
covered o;-g; of the elements in O;insome G, j<i
X 2 (01-81)+(0,-8,)+...+(0-g)=n-X

2x2n

x=n/2

Conclusion: For fixed k, greedy gets a least half as
much coverage as optimal

What about minimizing k?

Suppose optimal coverage uses k to cover n atoms

Assume we run greedy until it covers everything, taking h>k
resources

Analyze greedy’s h choices in batches of k

— Greedy covers at leastn/2 in firstbatch of k

— Second batch of kcovers atleast half of remaining atoms. Why?
Same analysis can be repeated.

Conclusion: greedy requires at most k*log,n resources

Note: Our bounds here are not tight. Better proof
exploiting is possible.

Applying to Other Problems

If we have a good approximation scheme for one NP-
complete problem, does this imply a good
approximation scheme for others?

Depends upon what whatyoumean by “good”...
The polynomial factor canbe a killer here

Conclusion: Approximationalgorithms will tend to be
problem specificunless one discovers a more general
approach toapproximation

Submodularity

¢ fisa function defined on sets
e Submodular if:

X,YCQXCY: f(XU{z})- f(X) = f(y U{z})- f(Y)

¢ Monotone if

XCY:f(Y)= f(X)

9/13/16



Submodularity in English

* Adding to a subset has more “bang” than
adding to asuperset, or

* Diminishing returns for adding to bigger sets

* Monotonicity in English: Bigger is better
(though not strictly)

Set Cover?

Does set cover fitthis framework?
f = number of atoms covered
Set Q=C

Is it submodular?

Is it monotone?

Maximizing Monotone Submodular
Set Functions

* Thisis NP-hard ingeneral ®
* Greedy algorithm for maximizing monotone
submodular set functionsis a 1-1/e factor from optimal

* Can usesimilar argument toset cover toget a resource
bound

* Proofin reading, similar to our 2Xbound, buta little
more subtle

* This provides a generic procedure for analyzing greedy
algorithms for certain classes of hard problems ©

Greedy Set Cover and Submodularity

Our greedy algorithm for set cover can be
understood as an instance of the greedy
approach for submodular set functions

Conclusion: We get a tighter bound for free!
(1-1/e > %)

9/13/16



9/13/16

Conclusions

Avoid worst consequences NP-hardness with clever
approximation algorithms (or clever analysis of simple
algorithms)

Caveats:

— Not all problems admit good approximate solutions

— Approximation techniques for particular problems don’t always

carry over to others

Some generic approaches exist:

— Greedy algorithms sometimes do well

— Submodularity provides a generic famework for analyzing
certain types of greedy algorithms

— Other families of approaches exist as well —rounding, LP
relaxations, etc.




