
9/13/16

1

Introduction	to	
Approximation	Algorithms

Ron	Parr
CPS	570

Covered	Today
• Approximation	in	general

• Set	cover

• A	greedy	algorithm	for	set	cover

• Submodularity

• A	generic,	greedy	algorithm	exploiting	
submodularity

Why	use	approximation?
• Lots	of	problems	we	want	to	solve	are	NP-hard	optimization	

problems,	often	with	associated	NP-complete	decision	
problems

• Different	notions	of	approximation
– Search	for	a	“pretty	good”	answer
– Return	an	optimal	answer	in	some	cases	(fail	in	others?)
– Return	an	answer	that	is	an	additive	factor	from	optimal:		result	
=	optimal	+/- ε

– Return	an	answer	that	a	multiplicative	factor	from	optimal:		
result/approximation	=	ε

– For	a	given	resource	level,	achieve	a	lower	performance	value?
– For	a	given	performance	level,	consume	more	resources?

Set	Cover
• Input:

– A	set	of	atoms:	 	S=s1…sn
– A	set	of	sets:		C=c1…cm
– Each	set	contains	1	or	more	atoms

• Optimization	question:	Can	you	choose	k	elements	
from	C	such	that	every	element	of	S	is	in	at	least	one	of	
these	k?	 (This	is	a	called	a	cover.)

• Decision	question:	Exist	a	cover	of	size	k	or	less?
• NP-hard



9/13/16

2

Set	Cover	Example

14	atoms
5	sets

Real	Problems	Abstracted	by	Set	Cover
• Sensor	placement:

– You	have	sensors	to	place	in	m	different	locations
– Each	location	can	observe	some	fraction	of	your	n	targets
– Find	the	most	efficient	sensor	allocation	to	see	all	targets

• Buying	bundles	of	goods
– Different	vendors	offer	package	deals	on	different	combinations	of	

products	(flat	rate	shipping)
– Buy	all	the	products	you	need	in	the	smallest	number	of	transactions

• Choosing	advertising	outlets
– Different	stations	(or	newspapers)	cover	different,	possibly	

overlapping	markets
– Try	to	cover	markets	with	smallest	number	of	ads

So,	what	do	we	do?

• Settle	for	a	larger	k?
–What	if	we	don’t	need	the	absolute	smallest	k?
– Is	there	an	algorithm	that	gives	something	close	to	
the	smallest?

• Settle	for	less	than	 full	coverage
–What	if	we	have	only	k	resources?
– Is	there	an	algorithm	that	gives	us	something	
close	to	the	best	we	can	hope	for	using	k?

Greedy	Algorithms
• Greedy	algorithms	are	a	general	class	of	
algorithms	that,	loosely	speaking,	make	a	choice	
that	gives	maximal	short	term	improvement,	
without	considering	subsequent	choices

• Examples	of	greedy	behavior:
– Picking	the	class	that	is	most	interesting	 to	you	first	
(ignoring	 that	this	might	 cause	scheduling	 problems	
with	 other	classes)

– Positioning	 a	sensor	so	that	it	sees	the	highest	
number	 of	targets	(while	 ignoring	 subsequent	 choices)



9/13/16

3

Greedy	Set	Cover

• Repeat	until	done*
– For	each	set	not	added,	check	how	many	
previously	uncovered	atoms	it	would	add

– Add	the	set	with	the	biggest	increase	in	the	
number	of	atoms	covered

• *What	 is	“done”
– Max	of	k	elements	added,	or
– All	elements	covered

What	does	greedy	do	here?

What	price	greed?

• Assume	we	have	a	budget	of	k

• Optimal	picks:	 	O1…Ok,	 covering	n	atoms

• Greedy	picks	G1…Gk,	 covering	x	atoms

• What	 is	the	 relationship	 between	x	and	n?

What	price	greed	(2)?

• oi =	number	 of	new elements	covered	 by	Oi

• gi =	number	 of	new elements	covered	 by	Gi

• n	=	o1+o2+…+ok
• x	=	g1+g2+…+gk



9/13/16

4

What	price	greed	(3)?
• Suppose	oi>gi
• Q:	Why	didn’t	greedy	pick	Oi?
• A:		The	only	reason	would	be	if	greedy	already	
covered	oi-gi of	the	elements	in	Oi in	some	Gj,	j<i

• x	≥	(o1-g1)+(o2-g2)+…+(ok-gk)=n-x
• 2x≥n
• x≥n/2

• Conclusion:		For	fixed	k,	greedy	gets	a	least	half	as	
much	coverage	as	optimal

What	about	minimizing	k?
• Suppose	optimal	coverage	uses	k	to	cover	n	atoms
• Assume	we	run	greedy	until	it	covers	everything,	taking	h>k	

resources
• Analyze	greedy’s h	choices	in	batches	of	k

– Greedy	covers	at	least	n/2	in	first	batch	of	k
– Second	batch	of	k	covers	at	least	half	of	remaining	atoms.		Why?		
Same	analysis	can	be	repeated.

• Conclusion:		greedy	requires	at	most	k*log2n	resources

• Note:		Our	bounds	here	are	not	tight.	Better	proof	
exploiting	submodularity is	possible.

Applying	to	Other	Problems
• If	we	have	a	good	approximation	scheme	for	one	NP-
complete	problem,	does	this	imply	a	good	
approximation	scheme	for	others?

• Depends	upon	what	what	you	mean	by	“good”…

• The	polynomial	factor	can	be	a	killer	here

• Conclusion:		Approximation	algorithms	will	tend	to	be	
problem	specific	unless	one	discovers	a	more	general	
approach	to	approximation

Submodularity

• f	is	a	function	 defined	 on	sets
• Submodular if:

• Monotone	 if

X ,Y ⊆Ω,X ⊆Y : f (X∪{z})− f (X)≥ f (Y∪{z})− f (Y )

X ⊆Y : f (Y )≥ f (X)



9/13/16

5

Submodularity in	English

• Adding	 to	a	subset	has	more	“bang”	 than	
adding	 to	a	superset,	 or

• Diminishing	 returns	 for	adding	 to	bigger	sets

• Monotonicity	 in	English:	Bigger	is	better	
(though	 not	 strictly)

Set	Cover?

• Does	set	cover	 fit	this	 framework?
• f	=	number	 of	atoms	covered
• Set	Ω=C

• Is	it	submodular?
• Is	it	monotone?

Maximizing	Monotone	Submodular
Set	Functions

• This	is	NP-hard	in	general		L
• Greedy	algorithm	for	maximizing	monotone	
submodular set	functions	is	a	1-1/e	factor	from	optimal

• Can	use	similar	argument	to	set	cover	to	get	a	resource	
bound

• Proof	in	reading,	similar	to	our	2X	bound,	but	a	little	
more	subtle

• This	provides	a	generic	procedure	for	analyzing	greedy	
algorithms	for	certain	classes	of	hard	problems	J

Greedy	Set	Cover	and	Submodularity

• Our	greedy	algorithm	for	 set	cover	can	be	
understood	 as	an	instance	of	the	greedy	
approach	 for	 submodular set	functions

• Conclusion:	 	We	get	a	tighter	bound	 for	free!
• (1-1/e	>	½)



9/13/16

6

Conclusions
• Avoid	worst	consequences	NP-hardness	with	clever	

approximation	algorithms	(or	clever	analysis	of	simple	
algorithms)

• Caveats:
– Not	all	problems	admit	good	approximate	solutions
– Approximation	techniques	for	particular	problems	don’t	always	
carry	over	to	others

• Some	generic	approaches	exist:
– Greedy	algorithms	sometimes	do	well
– Submodularity provides	a	generic	framework	for	analyzing	
certain	types	of	greedy	algorithms

– Other	families	of	approaches	exist	as	well	– rounding,	LP	
relaxations,	etc.	


