Linear Classification

Ron Parr

CPS 570

With content adapted from Andrew Ng , Lise Getoor, and Tom Dietterich Figures from textbook courtesy of Chris Bishop and © Chris Bishop

Classification

- Supervised learning framework
- Features can be anything
- Targets are discrete classes:
- Safe mushrooms vs. poisonous
- Malignant vs.benign
- Good credit risk vs. bad
- Can we treat classes as numbers?
- Single class?
- Multi class?

What is a Linear Disciminant?

- Simplest kind of classifier, a linear threshold unit (LTU):

$$
y(\mathbf{x})= \begin{cases}1 & \text { if } w_{1} x_{1}+\cdots+w_{n} x_{n} \geq w_{0} \\ 0 & \text { otherwise }\end{cases}
$$

- A linear discriminant is an $\mathrm{n}-1$ dimensional hyperplane
- \mathbf{w} is orthogonal to this
- Four algorithms for linear decision boundaries:
- Directly learn the LTU: Using Least Mean Square (LMS) algorithm
- Learn the conditional distribution: Logistic regression
- Learn the joint distribution:
- Naïve Bayes
- Linear discriminant analysis (LDA) refer to the "raw" variables \mathbf{x}, rather than the features as seen through the lens of our features, ϕ

Decision Boundaries

- A classifier can be viewed as partitioning the input space or feature space X into decision regions

- A linear threshold unit always produces a linear decision boundary. A set of points that can be separated by a linear decision boundary is linearly separable.

What can be expressed?

- Examples of things that can be expressed (Assume n Boolean (0/1 features)
- Conjunctions:
- $x_{1}{ }^{\wedge} x_{3}{ }^{\wedge} x_{4}: 1 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+1 \cdot x_{4} \geq 3$
- $x_{1} \wedge \neg x_{3}{ }^{\wedge} x_{4}: 1 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+1 \cdot x_{4} \geq 2$
- at-least-m-of-n
- at-least-2-of $\left(x_{1}, x_{2}, x_{4}\right)$
- $1 \cdot x_{1}+1 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4} \geq 2$
- Examples of things that cannot be expressed:
- Non-trivial disjunctions:
- $\left(x_{1}{ }^{\wedge} x_{3}\right)+\left(x_{3}{ }^{\wedge} x_{4}\right)$
- Exclusive-Or
- $\left(x_{1} \wedge \neg x_{2}\right)+\left(\neg x_{1} \wedge x_{2}\right)$

Non-linearly separable example

Multiclass

- k classes
- $O\left(k^{2}\right)$ one vs. one classifiers
- Expensive
- May not be consistent
- k-1 one vs. rest classifiers
- Less expensive
- Still may not be consistent
- K linear functions
- Assign x to class j if $\mathbf{w}_{j}^{\top} \mathbf{x}>\mathbf{w}_{i}^{\top} \mathbf{x}$ for all i
- Gives convex, singly connected decision regions
- How to pick the linear functions?

Why not use regression?

- Regression minimizes sum of squared errors on target function
- Gives strong influence to outliers

The "Neural" Story (Part I)

- Nice to justify machine learning w/nature
- Naïve introspection works badly
- Neural model biologically plausible
- Single neuron, linear threshold unit = perceptron
- (Longer rant on this later...)

Perceptron Learning

- We are given a set of inputs $\mathbf{x}^{(1)}$... $\mathbf{x}^{(n)}$
- $\mathrm{t}^{(1)} . . . \mathrm{t}^{(n)}$ is a set of target outputs (Boolean) $\{-1,1\}$
- w is our set of weights
- output of perceptron $=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}\right)$
- Perceptron_error $\left(\mathbf{x}^{(i)}, \mathbf{w}\right)=-\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}\right) * t^{(i)}$
-+1 when perceptron is incorrect
--1 when perceptron is correct
- Goal: Pick w to optimize

$$
\min _{\mathbf{w}} \sum_{i \in \text { misclassified }} \text { perceptron_error }\left(\mathbf{x}^{(i)}, \mathbf{w}\right)
$$

Update Rule

Repeat until convergence:

$$
\begin{aligned}
\underset{i \in \text { misclassified }}{\forall} \underset{j}{\forall}: w_{j} \leftarrow & {\underset{j}{j}}^{*}+\underset{j}{ } \underset{j}{(i)} t^{(i)} \\
& \text { "Learning Rate" } \\
& \text { (can be any constant) }
\end{aligned}
$$

- i iterates over samples
- j iterates over weights

Logistic Regression

- In logistic regression, we learn the conditional distribution $\mathrm{P}(\mathrm{t} \mid \mathbf{x})$
- Let $p_{t}(\mathbf{x} ; \mathbf{W})$ be our estimate of $P(t \mid \mathbf{x})$, where \mathbf{W} is a vector of adjustable parameters.
- Assume there are two classes, $\mathrm{t}=0$ and $\mathrm{t}=1$ and

$$
p_{1}(\mathbf{x} ; \mathbf{w})=\frac{e^{\boldsymbol{w}^{\prime} x}}{1+e^{\mathbf{w}^{\top} x}}=\frac{1}{1+e^{-\boldsymbol{w}^{\top} x}}
$$

$$
p_{0}(\mathbf{x} ; \mathbf{w})=1-p_{1}(\mathbf{x} ; \mathbf{w})=\frac{e^{-\mathbf{w}^{T} \mathbf{x}}}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}=\frac{1}{1+e^{\mathbf{w}^{\top} x}}
$$

- This is equivalent to

$$
\log \frac{p_{1}(\mathbf{x} ; \mathbf{w})}{p_{0}(\mathbf{x} ; \mathbf{w})}=\mathbf{w}^{T} \mathbf{x}
$$

- IOW, the log odds of class 1 is a linear function of \mathbf{x}

Perceptron Learning Properties (LTU Properties)

- Good news:
- If there exists a set of weights that will correctly classify every example, the perceptron learning rule will find it
- Does not depend on step size!
- Bad news:
- Perceptrons can represent only a small class of functions, "linearly separable," functions
- May oscillate if not separable
- No obvious generalization for multiclass

Why this form?

- One reason: transforms a linear function in the range $(-\infty,+\infty)$ to be positive and sum to 1 so that it can represent a probability

Constructing a Learning Algorithm

- Find the probability distribution h that is most likely, given the data.

$$
\begin{aligned}
\underset{h_{w}}{\arg \max } P\left(h_{w} \mid X\right) & =\underset{h_{w}}{\arg \max } \frac{P\left(X \mid h_{w}\right) P\left(h_{w}\right)}{P(X)} & & \text { by Bayes' Rule } \\
& =\underset{h_{w}}{\arg \max } P\left(X \mid h_{w}\right) P\left(h_{w}\right) & & \text { because } P(X) \text { doesn't depend on } \mathrm{h} \\
& =\underset{h_{w}}{\operatorname{argmax}} P\left(X \mid h_{w}\right) & & \text { if we assume } \mathrm{P}(\mathrm{~h}) \text { is uniform } \\
& =\underset{h}{\arg \max } \log P\left(X \mid h_{w}\right) & & \text { because log is monotone }
\end{aligned}
$$

- The likelihood function views $\mathrm{P}\left(\mathrm{X} \mid \mathrm{h}_{\mathrm{w}}\right)$ as a function of the parameters in the model. In this case, our parameters are the weights, w .
- The log likelihood is a commonly used objective function for learning algorithms. It is denoted $\mathrm{L}(\mathrm{w} ; \mathrm{X})$
- The w that maximizes the likelihood of the training data is called the maximum likelihood estimator

Log Likelihood for Conditional Probability Estimators

- We can express the log likelihood in a compact from
- Take an example (x $\left.{ }^{(\mathbf{i})}, t^{(\mathrm{i})}\right)$
- if $y^{(i)}=0$, the \log likelihood is $\log \left(1-p_{1}(\mathbf{x} ; w)\right.$
- if $y^{(i)}=1$, the \log likelihood is $\log p_{1}(x ; w)$
- These two are mutually exclusive, so we can combine them to get:
$L\left(\mathbf{w} ; \mathbf{x}^{(i)}, t\right)=\log P\left(t^{(i)} \mid \mathbf{x}^{(i)}, \mathbf{w}\right)=\left(1-t^{(i)}\right) \log \left[1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right]+t^{(i)} \log p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)$
- The goal of our leaming algorithm will be to find w to maximize:

$L(\mathbf{w} ; \mathbf{X}, \mathbf{t})$

Computing the Gradient

$$
\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}}=\sum_{i} \frac{\partial}{\partial \mathbf{w}_{j}} L\left(w ; t^{(i)}, \mathbf{x}^{(i)}\right)
$$

$$
\frac{\partial}{\partial \mathbf{w}_{j}} L\left(\mathbf{w} ; t^{(i)} ; \mathbf{x}^{(i)}\right)=\frac{\partial}{\partial \mathbf{w}_{j}}\left(\left(1-t^{(i)}\right) \log \left[1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right]+t^{(i)} \log p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)
$$

$$
=\left(1-t^{(i)}\right) \frac{1}{1-p_{1}\left(\mathbf{x}^{(i)} ; \boldsymbol{w}\right)}\left(-\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}}\right)+t^{(i)} \frac{1}{p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}\left(\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}_{j}}\right)
$$

$$
=\left[\frac{t^{(i)}}{p_{1}\left(\mathbf{x}^{(i)} ; \boldsymbol{w}\right)}-\frac{\left(1-t^{(i)}\right)}{1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}_{j}}\right)
$$

$$
=\left[\frac{t^{(i)}\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)-\left(1-t^{(i)}\right) p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}_{j}}\right)
$$

$$
=\left[\frac{t^{(i)}-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}}\right)
$$

Gradient cont.

- Recall the form of p_{1}
- So we get:

$$
\begin{aligned}
\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}} & =\frac{-1}{\left(1+e^{-\mathbf{w}^{T} \mathbf{x}^{(i)}}\right)^{2}} \frac{\partial}{\partial \mathbf{w}_{j}}\left(1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}\right) \\
& =\frac{1}{\left(1+e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}\right)^{2}} e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}} \frac{\partial}{\partial \mathbf{w}_{j}}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}\right) \\
& =\frac{1}{\left(1+e^{-\mathbf{w}^{T} \mathbf{x}^{(i)}}\right)^{2}} e^{-\mathbf{w}^{\top} \mathbf{x}^{(i)}}\left(x^{(i)}{ }_{j}\right) \\
& =p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right) x^{(i)}{ }_{j}
\end{aligned}
$$

$$
\text { Recall: } p_{0}(\mathbf{x} ; \mathbf{w})=1-p_{1}(\mathbf{x} ; \mathbf{w})=\frac{e^{-\mathbf{w}^{\prime} x}}{1+e^{-w^{\prime} x}}=\frac{1}{1+e^{w^{\prime} x}}
$$

Gradient cont.

- The gradient of the log likelihood for a single point is thus:
$\frac{\partial}{\partial \mathbf{w}_{j}} L\left(\mathbf{w} ; \mathbf{x}^{(i)}, t^{(i)}\right)=\left[\frac{t^{(i)}-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{\partial \mathbf{w}}\right)$
$=\left[\frac{t^{(i)}-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right)}\right] p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right) x^{(i)}{ }_{j}$

$$
=\left(t^{(i)}-p_{1}\left(\mathbf{x}^{(i)} ; \mathbf{w}\right)\right) x^{(i)}{ }_{j}
$$

- The overall gradient is

$$
\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}}=\sum_{i}\left(t^{(i)}-p_{1}\left(\mathbf{x}^{i} ; \mathbf{w}\right)\right) x^{(i)}{ }_{j}
$$

Compare w/percepton rule!

Logistic Regression for K > 2
 (Not Presented, but for reference)

- To handle K >2 classes, we make one class the 'reference' class. Suppose it is class K. Then we represent each of the other classes as a logistic function of the odds of class k versus class K :

$$
\begin{gathered}
\log \frac{P(y=1 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})}=\theta_{1} \cdot \mathbf{x} \\
\log \frac{P(y=2 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})}=\theta_{2} \cdot \mathbf{x} \\
\vdots \\
\log \frac{P(y=k-1 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})}=\theta_{k-1} \cdot \mathbf{x}
\end{gathered}
$$

- The conditional probability for class $\mathrm{k} \neq \mathrm{K}$ i

$$
P(y=k \mid x)=\frac{e^{\theta_{k} \times x}}{1+\sum_{j=1}^{K-1} e^{\theta_{j} \cdot x}}
$$

- and for class $\mathrm{k}=\mathrm{K}$:

$$
P(y=K \mid x)=\frac{1}{1+\sum_{j=1}^{K-1} e^{\theta_{j} x}}
$$

Batch Ascent/Descent

- Logistic regression w/training set $\left\{\left\langle\mathbf{x}^{(i)}, \mathrm{t}^{(i)}\right\rangle\right\}, \mathrm{i}=1 . . \mathrm{N}$ Repeat until convergence \{

$$
\text { for every } \mathrm{j}
$$

t++\}

- Perceptron:

Repeat until convergence \{for every j

$$
w_{j}^{(t+1)} w_{j}^{(t)}+\alpha \sum_{i \in \text { misclassified }} t^{(i)} x_{j}^{(i)}
$$

NB: t is a time index,
which indicates that
updates are done
synchronously, i.e., all
weights on the RHS are
frozen until all updates are
computed, then all weights
are simultaneously
updated together

Summary of Logistic Regression

- Learns the Conditional Probability Distribution $\mathrm{P}(\mathrm{t} \mid \mathbf{x})$
- No closed form solution
- Very simple expression for gradient permits local search
- Begin with initial weight vector.
- Gradient ascent to maximize objective function.
- Objective function is the log likelihood of the data
- Algorithm seeks the probability distribution $\mathrm{P}(\mathrm{t} \mid \mathbf{x})$ that is most likely given the data
- May be done online or in batch
- Can be used with acceleration methods (NewtonRaphson, etc.)

What We Already Know

- Linear Threshold Unit (LTU)
- Tries to discover a linear function (in feature space) that separates positive and negative examples
- Example: Perceptron
- Logistic Regression
- Maximizes log likelihood

$$
\log \frac{p_{1}(\mathbf{x} ; \mathbf{w})}{p_{0}(\mathbf{x} ; \mathbf{w})}=\mathbf{w}^{T} \mathbf{x}
$$

Linear Discriminant Analysis

- In LDA, we learn the distribution $\mathrm{P}(\mathbf{x} \mid \mathrm{t})$
- We assume that \mathbf{x} is continuous
- We assume $P(x \mid t)$ is distributed according to a multivariate normal distribution and $\mathrm{P}(\mathrm{t})$ is a discrete distribution
- Nota bene: LDA can also mean "Latent Dirichlet Allocation", which is something different

Naïve Bayes is a linear method!

- Choose class 1 when:

$$
\begin{aligned}
& P\left(x_{1} \ldots x_{n} \mid t_{1}\right) P\left(t_{1}\right)>P\left(x_{1} \ldots x_{n} \mid t_{0}\right) P\left(t_{1}\right) \\
& P\left(t_{1}\right) \prod_{i=1}^{n} P\left(x_{i} \mid t_{1}\right)>P\left(t_{0}\right) \prod_{i=1}^{n} P\left(x_{i} \mid t_{0}\right) \\
& \log \left(P\left(t_{1}\right)\right)+\sum_{i=1}^{n} \log \left(P\left(x_{i} \mid t_{1}\right)\right)>\log \left(P\left(t_{0}\right)\right)+\sum_{i=1}^{n} \log \left(P\left(x_{i} \mid t_{0}\right)\right)
\end{aligned}
$$

- Fundamentally same expressive power as other linear methods

Estimating the MVG parameters

- Given a set of data points $\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{\wedge}\right\}$, the maximum likelihood estimates for the parameters of the MVG are:

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{i} \mathbf{x}^{(i)} \\
\hat{\Sigma} & =\frac{1}{N-1} \sum_{i}\left(x^{(i)}-\hat{\mu}\right)\left(x^{(i)}-\hat{\mu}\right)^{\top}
\end{aligned}
$$

Putting it all together in LDA

- Also called Gaussian Discriminant Analysis
- Here
$-\mathrm{t} \sim$ Bernoulli(w)
- $\mathbf{x} \mid \mathrm{t}=0 \sim \mathrm{~N}\left(\mu_{0}, \Sigma\right)$
- $\mathbf{x} \mid \mathrm{t}=1 \sim \mathrm{~N}\left(\mu_{1}, \Sigma\right)$
- Writing this out, we get:

$$
\begin{aligned}
& p(x \mid t=0)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(x-\mu_{0}\right)^{T} \Sigma^{-1}\left(x-\mu_{0}\right)\right] \\
& p(x \mid t=1)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}\left(x-\mu_{1}\right)^{T} \Sigma^{-1}\left(x-\mu_{1}\right)\right]
\end{aligned}
$$

Called the Class Conditional densities

The Beauty of Homoscedasticity

- Recall we assumed Σ same for all classes
- When is $\mathrm{P}(\mathrm{t} 0 \mid \mathrm{x})>\mathrm{P}(\mathrm{t} 1 \mid \mathrm{x})$???

$$
\begin{gathered}
\frac{1}{(2 \pi)^{1^{2}|\Sigma|^{12}}} \exp \left[-\frac{1}{2}\left(x-\mu_{0}\right)^{T} \Sigma^{-1}\left(x-\mu_{0}\right)\right] p(t 0)> \\
\frac{1}{(2 \pi)^{10^{2} \mid\left(\left.\right|^{11^{2}}\right.}} \exp \left[-\frac{1}{2}\left(x-\mu_{1}\right)^{T} \Sigma^{-1}\left(x-\mu_{1}\right)\right] p(t 1) \\
-\left(x-\mu_{0}\right)^{T} \Sigma^{-1}\left(x-\mu_{0}\right)+k_{a}>-\left(x-\mu_{1}\right)^{T} \Sigma^{-1}\left(x-\mu_{1}\right)+k_{b}
\end{gathered}
$$

Linear!!!

Picking A Class

- We again use Bayes rule:

MVG conditional
feature probability

$P(t \mid X)=\frac{P(X \mid t) P(t)}{P(X)}$| Prior class |
| :--- |
| probability |

Posterior
label probability

Pror feature
probability (ignored)

Example

Homoscedastic LDA Discussion

- For multiclass, this gives convex decision boundaries
- This is nice because it makes classification easy (easy to use geometric data structures)
- How realistic is this?
- What do we give up?

Comparing LTU, LR, LDA

- Big debate about the relative merits of
- direct classifiers (like LTU) versus
- conditional models (like LR) versus
- generative models (like LDA, NB)

Heteroscedastic Distributions

LDA vs LR

- What is the relationship?
- In LDA, it turns out the $p(t \mid \mathbf{x})$ can be expressed as a logistic function where the weights are some function of μ_{1}, μ_{2}, and Σ !
- But, the converse is NOT true. If $p(t \mid x)$ is a logistic function, that does not imply $p(x \mid t)$ is MVG
- LDA makes stronger modeling assumptions than LR
- when these modeling assumptions are correct, LDA will perform better - LDAis asymptotically efficient: in the limit of very large training sets, there is no algorithm that is strictly better than LDA
- however, when these assumptions are incorrect, LR is more robust
- weaker assumptions, more robust to deviations from modeling assumptions
- if the data are non-Gaussian, then in the limit, logistic outperforms LDA
- For this reason, LRis a more commonly used algorithm

Issues

- Statistical efficiency: if the generative model is correct, then it usually gives better accuracy, especially for small training sets.
- Computational efficiency: generative models typically are the easiest to compute. In LDA, we estimated the parameters directly, no need for gradient ascent
- Robustness to changing loss function: Both generative and conditional models allow the loss function to change without reestimating the model. This is not true for direct LTU methods
- Robustness to model assumptions: The generative model usually performs poorly when the assumptions are violated.
- Robustness to missing values and noise: In many applications, some of the features $X^{(i)}{ }_{j}$ may be missing or corrupted for some training examples. Generative models provide better ways of handling this than non-generative models.

Conclusions

- Four linear methods
- Perceptron
- Logistic regression
- Naïve Bayes
- Linear Discriminant Analysis
- Perceptrons arefast
- LR, NB gives probabilities, are more robust
- LDA models the data

