
1

Linear	Classification

Ron	Parr
CPS	570

With	content	adapted	from	Andrew	Ng,	Lise Getoor,	and	Tom	Dietterich
Figures	from	textbook	courtesy	of	Chris	Bishop	 and	©	Chris	Bishop

Classification

• Supervised	learning	framework
• Features	can	be	anything
• Targets	are	discrete	classes:

– Safe	mushrooms	vs.	poisonous
– Malignant	 vs.	benign
– Good	credit	 risk	vs.	bad

• Can	we	treat	classes	as	numbers?
– Single	 class?
– Multi	class?

Representing	 Classes

• Interpret	t(i) as	 the	probability	that	the	ith element	
is	in	a	particular	class

• Classes	 usually	disjoint
• For	multiclass,	t(i) may	be	a	vector
• t(i)[j]=t(i)j=1	 if	ith element	 is	in	class	j,	0	OTW

• Notation:		For	convenience,	we	will	sometimes	
refer	 to	the	“raw”	variables	x,	rather	than	the	
features	 as	seen	 through	the	lens	of	our	features,	φ

What	is	a	Linear	Disciminant?
• Simplest	kind	of classifier,	a	linear	threshold	unit	(LTU):

 !!!!!!

€

y(x) =
1 if w1x1 ++wnxn ≥w0

0 otherwise

$
%

• A	linear	discriminant	is	an	n-1	dimensional	hyperplane
• w is	orthogonal	to	this
• Four	algorithms	for	linear	decision	boundaries:

– Directly	learn	 the	LTU:	 Using	Least	Mean	Square	(LMS)	algorithm
– Learn	 the	conditional	distribution:	Logistic	regression
– Learn	 the	joint	distribution:

– Naïve	Bayes
– Linear	discriminant	analysis	(LDA)

2

Decision	 Boundaries
• A	classifier	can	be	viewed	as	partitioning	the	input	space	or	feature	

space	 X	into	decision	regions

1

1

1
1

1

0

0 0
0

0

0

0

x1

x2

• A	linear	threshold	unit	always	produces	a	linear	decision	boundary.		A	
set	of	points	that	can	be	separated	by	a	linear	decision	boundary	is
linearly	separable.	

What	can	be	expressed?
• Examples	of	things	that	can	be	expressed

(Assume	n Boolean	(0/1	features)
– Conjunctions:	

• x1^x3^x4	:			1⋅x1	+	0⋅x2 +1⋅x3		+	1⋅x4	≥ 3
• x1^¬x3^x4:		1⋅x1	+	0⋅x2 +-1⋅x3		+	1⋅x4	≥ 2

– at-least-m-of-n
• at-least-2-of(x1,x2,x4)
• 1⋅x1	+	1⋅x2 +	0⋅x3		+	1⋅x4	≥ 2

• Examples	of	things	that	cannot	be	expressed:
– Non-trivial	disjunctions:

• (x1^x3)	+	(x3^x4)
– Exclusive-Or

• (x1^¬x2)	+	(¬x1^x2)

Non-linearly	separable	example

1

1

0

0

x1

x2

Multiclass
• k	classes
• O(k2)	one	vs.	one	classifiers

– Expensive
– May	not	be	consistent

• k-1	one	vs.	rest	classifiers
– Less	expensive
– Still	may	not	be	consistent

• K	linear	functions
– Assign	x	to	class	j	if	wj

Tx>	wi
Tx for	all	i

– Gives	convex,	singly	connected	decision	regions
– How	to	pick	the	linear	functions?

3

Why	not	use	regression?

• Regression	minimizes	sum	of	squared	
errors	on	target	function

• Gives	strong	influence	to	outliers

Magenta = linear regression

Note: Class
labels are in Z
dimension

The	“Neural”	Story	(Part	I)

• Nice	to	justify	machine	learning	w/nature
• Naïve	introspection	works	badly
• Neural	model	biologically	plausible

• Single	neuron,	linear	threshold	unit	=	perceptron
• (Longer	rant	on	this	later…)

Perceptron

node/
neuron

xj wj

Y

f

f	is	a	simple	step	function	(sgn)

!!!!

€

y = sgn(wTx)

Perceptron Learning
• We	are	given	a	set	of	inputs	x(1)…x(n)

• t(1)…t(n) is	a	set	of	target	outputs	(Boolean)	{-1,1}
• w is	our	set	of	weights
• output	of	perceptron =	sgn(wTx)
• Perceptron_error(x(i),	w)	=	-sgn(wTx) *	t(i)

– +1	when	perceptron is	incorrect
– -1	when	perceptron is	correct

• Goal:		Pick	w	to	optimize:
min
w

perceptron_error(x(i) ,w)
i∈misclassified
∑

4

Update	Rule

!!!!

€

∀
i∈misclassified

∀
j
:w j← w j +αx j

(i)t(i)

Repeat	 until	 convergence:

“Learning	 Rate”
(can	be	any	constant)

• i	 iterates	 over	 samples
• j	 iterates	 over	 weights

Perceptron	Learning	Properties
(LTU	Properties)

• Good	news:
– If	there	 exists	a	 set	of	weights	 that	will	 correctly	
classify	every	 example,	 the	perceptron learning	 rule	
will	 find	it

– Does	not	depend	on	step	size!

• Bad	news:
– Perceptrons can	 represent	 only	a	 small	 class	of	
functions,	“linearly	 separable,”	 functions

– May	oscillate	 if	not	separable
– No	obvious	generalization	 for	multiclass

Logistic	 Regression

• In	logistic	regression,	we	learn	the	conditional	distribution	P(t|x)

• Let	pt(x;	w)	 be	our	estimate	of	P(t|x),	where	w is	a	vector	of	
adjustable	parameters.		

• Assume	 there	are	two	classes,	t	=	0	and	t	=	1	and

!!!!!!

€

p1 x;w() =
ew T x

1+ ew T x
=

1
1+ e−w

T x

!!!!!!

€

p0 x;w() = 1 − p1 x;w() =
e−w

T x

1+ e−w
T x

=
1

1+ ew T x

• This	is	equivalent	to

• IOW,	the	log	odds	 of	class	1	is	a	linear	function	of	 x

!!!!!!

€

log
p1 x;w()
p0 x;w()

= wTx

Why	this	form?

• One	reason:	transforms	a	linear	function	in	the	range	(-∞,+∞)	to	be	
positive	and	sum	to	1	so	that	it	can	represent	a	probability

0.0
0.0-10.0 10.0

!!!!!!

€

ew T x

1+ ew T x

1.0

!!!!

€

wTx

5

Constructing	a	Learning	Algorithm
• Find	the	probability	distribution	h	that	is	most	likely,	given	the	data.		

!!

€

argmax
hw

P(hw | X) = argmax
hw

P(X |hw)P(hw)
P(X)

by	Bayes’	 Rule

!!

€

= argmax
hw

P(X |hw)P(hw) because	 P(X)	doesn’t	 depend	 on	 h

!!

€

= argmax
hw

P(X |hw) if	we	assume	 P(h)	 is	uniform

!!

€

= argmax
hw

logP(X |hw) because	 log	 is	 monotone

• The	 likelihood	function	views	P(X|hw)	as	a	function	of	the	parameters	in	the	
model.		In	this	case,	our	parameters	are	 the	 weights,	w.

• The	 log	likelihood	is	a	commonly	used	objective	function	for	learning	
algorithms.		It	is	denoted L(w;X)

• The	 w that	maximizes	the	likelihood	of	the	training	data	is	called	the	
maximum	likelihood	estimator

Log	Likelihood	for	Conditional	
Probability	Estimators

• We	can	express	the	log	likelihood	in	a	compact	from
• Take	 an	example	(x(i),t(i))

– if	y(i)	=	0,	 the	log	 likelihood	 is	 log(1-p1(x;	w))
– if	y(i)	=	1,	 the	log	 likelihood	 is	 log	p1(x; w)

• These	two	are	 mutually	exclusive,	so	we	can	combine	them	to	get:

!!!!!!

€

L(w;x(i),t) = logP(t(i) | x(i),w) = (1 − t(i)) log 1 − p1(x
(i);w)[] + t(i) logp1(x

(i);w)

• The	goal	of	our	learning	algorithm	will	be	to	find	w	to	maximize:

!!!!

€

L(w;X,t)

Computing	the	Gradient

∂L(w)
∂w j

=
∂

∂w j

L(w;t (i)
i
∑ ,x(i))

!!!!!!

€

∂
∂w j

L(w;t(i);x(i)) =
∂
∂w j

((1 − t(i)) log 1 − p1(x
(i);w)[] + t(i) logp1(x

(i);w))

= (1−t (i)) 1
1−p1 (x

(i) ;w)
−
∂p1(x

(i) ;w)
∂w j

#

$
%
%

&

'
(
(+t

(i) 1
p1 (x

(i) ;w)

∂p1(x
(i) ;w)

∂w j

#

$
%
%

&

'
(
(

!!!!!!

€

= t (i)

p1 (x
(i) ;w) −

(1−t (i))
1−p1 (x

(i) ;w)[] ∂p1(x
(i);w)

∂w j

$

%
& &

'

(
))

!!!!!!

€

= t (i) (1−p1 (x
(i) ;w))−(1−t (i))p1 (x

(i) ;w)
p1 (x

(i) ;w)(1−p1 (x
(i) ;w))

$ %

&
' (
∂p1(x

(i);w)
∂w j

*

+
, ,

-

.
/ /

!!!!!!

€

= t (i) −p1 (x
(i) ;w)

p1 (x
(i) ;w)(1−p1 (x

(i) ;w))[] ∂p1(x
(i);w)

∂w j

$

%
& &

'

(
))

Gradient	cont.

!!!!!!

€

p1(x
(i);w) =

ew T x (i)

1+ ew T x (i)
=

1
1+ e−w

T x (i)

!!!!!!

€

∂p1(x
(i);w)

∂w j

=

• Recall	the	form	of	p1:

!!!!!!

€

=
1

(1+ e−w
T x (i))2

e−w
T x (i) ∂

∂w j

(wTx(i))

!!!!!!

€

=
1

(1+ e−w
T x (i))2

e−w
T x (i) (x (i) j)

• So	we	get:

!!!!!!

€

= p1(x
(i);w)(1 − p1(x

(i);w))x (i) j

!!!!!!

€

−1
(1+ e−w

T x (i))2
∂
∂w j

(1+ e−w
T x (i))

!!!!!!

€

p0 x;w() = 1 − p1 x;w() =
e−w

T x

1+ e−w
T x

=
1

1+ ew T xRecall:

6

Gradient	cont.
• The	 gradient	 of	the	log	likelihood	for	a	single	point	is	thus:

• The	 overall	gradient	 is:

!!!!

€

∂
∂w j

L(w;x(i),t(i))

!!!!!!

€

= t (i) −p1 (x
(i) ;w)

p1 (x
(i) ;w)(1−p1 (x

(i) ;w))

$ %

&
' (
∂p1(x

(i);w)
∂w j

*

+
, ,

-

.
/ /

!!!!!!

€

= t (i) −p1 (x
(i) ;w)

p1 (x
(i) ;w)(1−p1 (x

(i) ;w))

$ %

&
' (p1(x

(i);w)(1 − p1(x
(i);w))x (i) j

!!!!!!

€

= (t(i) − p1(x
(i);w))x (i) j

!!!!!!

€

∂L(w)
∂w j

= (t(i) − p1(x
i;w))x (i) j

i
∑

Compare	 w/percepton	 rule!

Batch	Ascent/Descent

• Logistic	regression	w/training	set	{〈x(i),	t(i)〉},	i =	1..N

• Perceptron:

Repeat	until	convergence	{
for	every	j

t++}

w(t+1)
j =wj +α t (i) −p(x (i) ;w(t))()

i=1

N

∑ x j
(i)

Repeat	until	convergence {for	every	j

t++}

w(t+1)
j =w

(t)
j +α t (i)x j

(i)

i∈misclassified
∑

NB: t is a time index,
which indicates that
updates are done
synchronously, i.e., all
weights on the RHS are
frozen until all updates are
computed, then all weights
are simultaneously
updated together

Logistic	 Regression	 for	K	>	2
(Not	Presented,	but	for	reference)

• To	handle	K	>2	classes,	we	make	one	class	the	‘reference’	 class.		Suppose	it	is	
class	K.		Then	we	represent	 each	of	the	 other	 classes	as	a	logistic	function	of	
the	 odds	of	class	k versus	class	K:

!!!!!!

€

P y = k | x() =
eθ k ⋅x

1+ eθ j ⋅x

j=1

K −1

∑

• The	 conditional	probability	for	class	k	≠	K	is	
 !!!!!!

€

log
P(y = 1 | x)
P(y = K | x)

= θ1 ⋅ x

log P(y = 2 | x)
P(y = K | x)

= θ2 ⋅ x



log
P(y = k −1 | x)
P(y = K | x)

= θk−1 ⋅ x

• and	for	class	k	=	K:

!!!!!!

€

P y = K | x() =
1

1+ eθ j ⋅x

j=1

K −1

∑

Summary	of	Logistic	Regression

• Learns	the	Conditional	Probability	Distribution P(t|x)
• No	closed	form	solution
• Very	simple	expression	for	gradient	permits	local	search

– Begin	with	initial	weight	vector.
– Gradient	ascent	to	maximize	objective	function.
– Objective	function	is	the	log	likelihood of	the	data
– Algorithm	seeks	the	probability	distribution	P(t|x)	that	is	most	

likely	given	the	data.

• May	be	done	online	or	in	batch
• Can	be	used	with	acceleration	methods	(Newton-

Raphson,	etc.)

7

What	We	Already	Know

• Linear	Threshold	Unit	(LTU)
– Tries	 to	discover	 a	linear	 function	 (in	feature	 space)	
that	 separates	 positive	 and	negative	 examples

– Example:	 Perceptron

• Logistic	Regression
– Maximizes	 log	 likelihood

!!!!!!

€

log
p1 x;w()
p0 x;w()

= wTx

Naïve	Bayes	is	a	linear	method!

• Choose	class	1	when:

• Fundamentally	same	expressive	power	as	
other	linear	methods

P(x1...xn|t1)P(t1)>P(x1...xn|t0)P(t1)

P(t1) P(xi|t1)
i=1

n

∏ >P(t0) P(xi|t0)
i=1

n

∏

log(P(t1))+ log(P(xi|t1))
i=1

n

∑ > log(P(t0))+ log(P(xi|t0))
i=1

n

∑

Linear	Discriminant	 Analysis

• In	LDA,	we	learn	the	distribution	 P(x|t)

• We	assume	that	x is	continuous
• We	assume	P(x|t)	is	distributed		according	to	a	

multivariate	normal	distribution	 and	P(t)	is	a	discrete	
distribution

• Nota	bene:		LDA	can	also	mean	“Latent	Dirichlet
Allocation”,	which	is	something	different

Estimating	the	MVG	parameters

• Given	a	set	of	data	points	{x1,…,	xN},	the	maximum	likelihood	
estimates	for	the	parameters	of	the	MVG	are:

!!!!!!

€

ˆ µ =
1
N

x(i)

i
∑

Σ̂=
1

N−1
(x(i)

i
∑ − µ̂)(x(i) − µ̂)T

8

Putting	it	all	together	 in	LDA

• Also	called	 Gaussian	 Discriminant Analysis
• Here

– t	∼ Bernoulli(w)
– x|t=0	∼ Ν(µ0,	Σ)
– x|t=1	∼ Ν(µ1,	Σ)

• Writing	 this	out,	we	 get:

!!!!

€

p(x | t = 0) = 1
2π()n /2 Σ 1 /2 exp −

1
2

x − µ0()TΣ−1 x − µ0()
%

& '
(

) *

!!!!

€

p(x | t = 1) = 1
2π()n /2 Σ 1 /2 exp −

1
2

x − µ1()TΣ−1 x − µ1()
%

& '
(

) *

Called	 the	 Class	Conditional densities

Picking	A	Class

• We	again	use	Bayes	rule:

!!

€

P(t | X) =
P(X | t)P(t)

P(X)
Posterior
label	probability

MVG	conditional
feature	 probability

Prior	class
probability

Prior	feature
probability	 (ignored)

The	Beauty	of	Homoscedasticity

• Recall	we	assumed	Σ same	 for	all	classes
• When	is	P(t0|x)>P(t1|x)???

!!!!

€

1
2π()n /2 Σ 1 /2 exp −

1
2

x − µ0()TΣ−1 x − µ0()
%

& '
(

) *
p(t0) >

1
2π()n /2 Σ 1 /2 exp −

1
2

x − µ1()TΣ−1 x − µ1()
%

& '
(

) *
p(t1)

− x −µ0()
T
Σ−1 x −µ0()+ka >− x −µ1()

T
Σ−1 x −µ1()+kb

Linear!!!

Example

The	decision	boundary	is	at	p(y=1|x)	=	0.5

9

Homoscedastic LDA	Discussion

• For	multiclass,	this	gives	convex	decision	
boundaries

• This	is	nice	because	it	makes	classification	easy	
(easy	to	use	geometric	 data	structures)

• How	realistic	 is	this?
• What	do	we	give	up?

Heteroscedastic Distributions

(assuming uniform class priors, in this example)

Comparing	 LTU,	 LR,	LDA

• Big	debate	about	the	relative	merits	of
– direct	classifiers	 (like	LTU)	versus
– conditional	models	(like	LR)	versus
– generative	models	(like	LDA,	NB)

LDA	vs	LR
• What	is	the	relationship?

– In	LDA,	it	turns	out	the	p(t|x)	can	be	expressed	as	a	logistic	function	
where	 the	weights	are	 some	function	of µ1,	µ2,	and	Σ!

– But,	the	converse	is	NOT	true.		If	p(t|x)	is	a	logistic	function,	that	does	
not	imply	p(x|t)	is	MVG

• LDA	makes	stronger	modeling	assumptions	than	LR
– when	these	modeling	assumptions	are	correct,	LDA	will	perform	better

• LDA	is	 asymptotically	 efficient:	 in	 the	 limit	of	very	large	 training	 sets,	 there	 is	
no	algorithm	 that	 is	 strictly	better	 than	LDA

– however,	when	these	assumptions	are	incorrect,	LR	is	more	robust
• weaker	assumptions,	 more	 robust	 to	deviations	 from	modeling	 assumptions
• if	 the	data	are	non-Gaussian,	 then	 in	 the	 limit,	 logistic	 outperforms	 LDA
• For	 this	 reason,	 LR	is	a	more	commonly	used	algorithm

10

Issues
• Statistical	efficiency:	if	the	generative	model	is	correct,	then	it	usually	

gives	better	accuracy,	especially	for	small	training	sets.
• Computational	 efficiency: generative	models	typically	are	the	easiest	

to	compute.	 	In	LDA,	we	estimated	the	parameters	directly,	no	need	
for	gradient	ascent

• Robustness	 to	changing	 loss	function: Both	 generative	and	
conditional	models	allow	the	loss	function	 to	change	without	re-
estimating	the	model.		This	is	not	true	for	direct	LTU	methods

• Robustness	 to	model	assumptions:	 The	generative	model	usually	
performs	 poorly	when	the	assumptions	 are	violated.

• Robustness	 to	missing	values	and	 noise:	 In	many	applications,	some	
of	 the	features	x(i) j may	be	missing	or	corrupted	for	some	 training	
examples.	 	Generative	models	provide	better	ways	of	handling	this	
than	non-generative	models.

Conclusions

• Four	linear	methods
– Perceptron
– Logistic	regression
– Naïve	Bayes
– Linear	Discriminant Analysis

• Perceptrons are	fast
• LR,	NB	gives	probabilities,	are	more	robust
• LDA	models	the	data

