Decision Theory

CPS 570
Ron Parr

Utility Functions

- A utility function is a mapping from world states to real numbers
- Sometimes called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$
\begin{aligned}
& \max _{a} \sum_{s} P(s \mid a) U(s) \\
& a=\text { actions, s = states }
\end{aligned}
$$

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in Al to model intelligence
- Asked (sort of) by any intelligent person every day

Are Utility Functions Natural?

- Some have argued that people don't really have utility functions
- What is the utility of the current state?
- What was your utility at $8: 00 \mathrm{pm}$ last night?
- Utility elicitation is difficult problem
- It's easy to communicate preferences
- Theorem (sorta): Given a plausible set of assumptions about your preferences, there must exist a consistent utility function

Axioms of Utility Theory

- Orderability: $(A \succ B) \vee(A \prec B) \vee(A \sim B)$
- Transitivity: $\quad(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
- Continuity: $\quad A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
- Substitutability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
- Monotonicity: $A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \geq[q, A ; 1-q, B])$
- Decomposability:
$[p, A ;(1-p),[q, B ;(1-q), C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]$

More Consequences

- Scale invariance
- Shift invariance

Consequences of Preference Axioms

- Utility Principle
- There exists a real-valued function U :

$$
\begin{aligned}
& U(A)>U(B) \Leftrightarrow A \succ B \\
& U(A)=U(B) \Leftrightarrow A \sim B
\end{aligned}
$$

- Expected Utility Principle
- The utility of a lottery can be calculated as:

```
U([\mp@subsup{p}{1}{},\mp@subsup{S}{1}{};\ldots;\mp@subsup{p}{n}{},\mp@subsup{S}{n}{}])=\sum\mp@subsup{p}{i}{}U(\mp@subsup{S}{i}{})
```


Maximizing Utility

- Suppose you want to befamous
- You can be either (N,M,C)
- Nobody
- Modestly Famous
- Celebrity
- Your utility function:
- $U(N)=20$
- $U(M)=50$
- $U(C)=100$
- You have to decide between going to grad school and becoming a professor (G) or going to Hollywood and becoming an actor (A)

Outcome Probabilities

- $P(N \mid G)=0.5, P(M \mid G)=0.4, P(C \mid G)=0.1$
- $P(N \mid H)=0.6, P(M \mid H)=0.2, P(C \mid H)=0.2$
- Maximize expected utility:
- $U(N)=20, U(M)=50, U(C)=100$

$$
E U_{G}=0.5(20)+0.4(50)+0.1(100)=40
$$

Hollywood wins!

Utility of Money

- How much happier are you with an extra \$1M?
- How much happier is Bill Gates with an extra $\$ 1 \mathrm{M}$?
- Some have proposed:

$$
E U_{H}=0.6(20)+0.2(50)+0.2(100)=42
$$

A Sigmoidal Utility Function

$$
U(\$ X)=100 \frac{1}{1+2^{-0.00001 x}}
$$

Utility \& Gambling

- Suppose $U(\$ X)=X$, would you spend $\$ 1$ for a 1 in a million chance of winning $\$ 1 \mathrm{M}$?
- Suppose you start with c dollars:
- $\mathrm{EU}(\mathrm{gamble})=1 / 1000000(1000000+(\mathrm{c}-1))+(1-1 / 1000000)(\mathrm{c}-1)=\mathrm{c}$
- EU(do_nothing)=c
- Starting amount doesn't matter
- You have no expected benefit from gambling

Convexity \& Gambling

- Convexity: $f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$ $0 \leq \alpha \leq 1$
- Suppose x and y are in the convex region of the utility function and are possible outcomes of a bet
- Current cash on hand is $x<z<y$
- Suppose bet has 0 expected change in monetary value: $z=\alpha x+(1-\alpha) y$
- Will the bet be accepted?
- Utility of doing nothing: $f(z)$
- Utility of accepting the bet: $\alpha f(x)+(1-\alpha) f(y)$

Sigmoidal Utility \& Gambling

- Suppose: $U(\$ X)=100 \frac{1}{1+2^{-0.00001 X}}$
- Suppose you start with \$1M
- EU(gamble)-EU(do_nothing)=-5.7*10-7
- Winning is worthless
- Suppose you start with -\$1M
- EU(gamble)-EU(do_nothing)=+4.9*10-5
- Gambling is rational because losing doesn't hurt

Multiattribute Utility Functions

- So far, we have defined utility over states
- As always, there are too many states
- We'd like to define utility functions over variables in some clever way
- What's a natural way to decompose utility?

Additive Independence

- Suppose it makes me happy to have my car clean
- Suppose it makes me happy to have coffee
- U=U(coffee)+U(clean)
- It seems that these don't interact
- However, suppose there's a tea variable
- $\mathrm{U}=\mathrm{U}$ (coffee) $+\mathrm{U}($ tea $)+\mathrm{U}($ clean $)$???
- Probably not. I'd need U(coffee,tea)+U(clean)
- Parallel theory to decomposition of utilities into state variables as with Bayesian networks

VPI Example

- Should you pay to subscribe for traffic information? Assume:
- Time = money
- Cost of taking highway to work (w/o traffic_jam) $=15$
- Cost of taking highway to work (w/traffic_jam) $=30$
- Cost of taking local roads to work $=20$
- $\mathrm{P}($ traffic jam $)=0.15$
- Two steps:
- Determine optimal decision w/o information
- Estimate value of information

Value of Information

- Expected utility of action a with evidence E :

$$
\mathrm{EU}_{\mathrm{E}}(A \mid E)=\max _{a \in A} \sum_{i} P\left(S_{i} \mid E, a\right) U\left(S_{i}\right)
$$

- Expected utility given new evidence E^{\prime}

$$
E U_{E, E^{\prime}}\left(A \mid E, E^{\prime}\right)=\max _{a \in A} \sum P\left(S_{i} \mid E, E^{\prime}, a\right) U\left(S_{i}\right)
$$

- Value of knowing E' (Value of Perfect Information)
 Expected utility given Previous New information (weighted) Expected utility

VPI for Traffic Info

- Cost of local roads $=20$
- Cost of highway $=0.15 * 30+0.85 * 15=17.25$
- Traffic = true case: Take local roads; cost $=20$
- Traffic = false case: Take highway; cost $=15$
- Expected cost: $0.15 * 20+0.85 * 15=15.75$
- Value $=1.5$
- Important: In this case, the optimal choice given the information was trivial. In general, we may to do more computation to determine the optimal choice given new information - not all decisions are "one shot"

How Information is Doled Out

- VPI = Value of Perfect Information
- In practice, information is:
- Partial
- Imperfect
- Partial information:
- We learn about some state variables, but don't learn the exact state of the world
- Example: We can see a traffic camera at one intersection, but we don't have coverage of our entire route
- Imperfect information:
- We learning something that may not be reliable
- Example: There may be a lag in our traffic data
- Our framework can handle this by introducing an extra variable. (We get perfect information about the observed variable, andthis influences the distribution over the others.)

Properties of VPI

- VPI is non-negative!
- VPI is order independent
- VPI is not additive
- VPI is easy to compute and is often used to determine how much you should pay for one extra piece of information. Why is this myopic?

For example, knowing X AND Y together may useful, while knowing just one alone may be useless.

Examples Where Value of Information is (should be) Considered

- Medical tests (x-rays, CT-scans, mammograms, etc.)
- Pregnancy tests
- Pre-purchase house/car inspections
- Subscribing to Consumer Reports
- Hiring consultants
- Hiring a trainer
- Funding research
- Checking one's own credit score
- Checking somebody else's credit score
- Background checks
- Drug tests
- Real time stock prices
- Etc.

More Properties of VPI

- Acquiring information optimally is very difficult
- Need to construct a conditional plan for every possible outcome before you ask for even the first piece of information
- Suppose you're a doctor planning to treat a patient
- Picking the optimal test to do first requires that you consider all subsequent tests and all possible treatments as a result of these tests
- General versions of this problem are intractable!

Decision Theory as Search

- Can view DT probs as search probs
- States = atomic events

DT as Search

- Attach costs to arcs, leaves
- Path(s) w/lowest expected cost = optimal
- Minimizing expect cost = maximizing expected utility
- Expectimax:

$$
\begin{aligned}
& \mathrm{V}\left(n_{\max }\right)=\max _{s \in \operatorname{succesors}(n)} \mathrm{V}(s) \\
& \mathrm{V}\left(n_{\text {chance }}\right)=\sum_{s \in \text { succesors }(n)} \mathrm{V}(s) p(s)
\end{aligned}
$$

The Form of DT Solutions

- The solution to a DT problem with many steps isn't linear in the number of steps. (Why?)
- What does this say about computational costs?
- Can heuristics help?

Conclusions

- Decision theory provides a framework for optimal decision making
- Principle: Maximize Expected Utility
- Easy to describe in principle
- Application to multistep problems can require advanced planning and probabilistic reasoning techniques

