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Decision	Theory
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Ron	Parr

Decision	Theory

• Asked	by	economists	to	study	consumer	behavior
• Asked	by	MBAs	 to	maximize	profit
• Asked	by	leaders	to	allocate	resources
• Asked	in	OR	to	maximize	efficiency	of	operations
• Asked	in	AI	to	model	intelligence

• Asked	(sort	of)	by	any	intelligent	person	every	day

What	does	it	mean	 to	make	an	optimal	decision?

Utility	Functions

• A	utility	 function is	a	mapping	 from	world	
states	to	 real	numbers

• Sometimes	called	a	value	 function
• Rational	or	optimal	behavior	 is	typically	
viewed	as	maximizing	expected	 utility:

!!

€ 

max
a

P(s |a)U(s)
s
∑

a	=	actions,	 s	=	states

Are	Utility	Functions	Natural?

• Some	have	argued	that	people	don’t	really	have	
utility	functions
• What	 is	the	utility	of	the	current	 state?
• What	was	your	utility	at	8:00pm	last	night?
• Utility	elicitation is	difficult	problem

• It’s	easy	to	communicate	preferences
• Theorem	(sorta):	Given	a	plausible	set	of	
assumptions	about	your	preferences,	there	must	
exist	a	consistent	utility	function
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• Orderability:
• Transitivity:	
• Continuity:
• Substitutability:
• Monotonicity:
• Decomposability:

Axioms	of	Utility	Theory

  !!

€ 

(A B)∨ (A B)∨ (A ~ B)

  !!

€ 

(A B)∧ (B  C)⇒ (A C)

  !!!!

€ 

A B  C⇒∃p[p,A;1 − p,C] ~ B

!!!!

€ 

A ~ B⇒ [p,A;1 − p,C] ~ [p,B;1 − p,C]

  !!!!

€ 

A B⇒ (p ≥ q⇔ [p,A;1 − p,B] ≥ [q,A;1 − q,B])

!!!!

€ 

[p,A;(1 − p),[q,B;(1 − q),C]] ~ [p,A;(1 − p)q,B;(1 − p)(1 − q),C]

Consequences	 of	Preference	 Axioms

• Utility	Principle
• There	exists	a	real-valued	function	U:

• Expected	 Utility	Principle
• The	utility	of	a	lottery	can	be	calculated	as:

  !!

€ 

U(A) >U(B)⇔ A B

!!

€ 

U(A) =U(B)⇔ A ~ B

  !!!!

€ 

U([p1,S1;…;pn,Sn]) = piU(Si)
i
∑

More	Consequences

• Scale	invariance

• Shift	invariance

Maximizing	Utility

• Suppose	you	want	to	be	famous
• You	can	be	either	(N,M,C)

• Nobody
• Modestly	Famous
• Celebrity

• Your	utility	function:
• U(N)	=	20
• U(M)	=	50
• U(C)	=	100

• You	have	to	decide	between	going	to	grad	school	and	
becoming	a	professor	(G)	or	going	to	Hollywood	and	
becoming	an	actor	(A)
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Outcome	Probabilities

• P(N|G)=0.5,	P(M|G)=0.4,	P(C|G)=0.1
• P(N|H)=0.6,	P(M|H)=0.2,	 P(C|H)=0.2
• Maximize	expected	 utility:

• U(N)	=	20,	U(M)	=	50,	U(C)	=	100

!!!!

€ 

EUG = 0.5(20) + 0.4(50) + 0.1(100) = 40
EUH = 0.6(20) + 0.2(50) + 0.2(100) = 42

Hollywood	 wins!

Utility	of	Money
• How	much	happier	are	you	with	an	extra	$1M?
• How	much	happier	is	Bill	Gates	with	an	extra	$1M?
• Some	have	proposed:
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Utility	of	Money

• U(money)	 should	drop	slowly	in	negative	 region	 too

• If	you’re	 solvent,	 losing	$1M	is	pretty	bad

• If	already	 $10M	in	debt,	losing	another	$1M	isn’t	that	bad

• Utility	of	money	 is	probably	 sigmoidal	 (S	shaped)

A Sigmoidal Utility Function

!!!!

€ 

U($X ) = !100
1

1+ 2%0.00001X
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Utility	&	Gambling

• Suppose	U($X)=X,	would	you	spend	$1	for	a	1	in	a	
million	chance	of	winning	$1M?

• Suppose	you	start	with	c	dollars:
• EU(gamble)=1/1000000(1000000+(c-1))+(1-1/1000000)(c-1)=c
• EU(do_nothing)=c

• Starting	amount	doesn’t	matter
• You	have	no	expected	benefit	from	gambling

Sigmoidal	Utility	&	Gambling

• Suppose:	

• Suppose	 you	start	with	$1M
• EU(gamble)-EU(do_nothing)=-5.7*10-7

• Winning	is	worthless

• Suppose	 you	start	with	-$1M
• EU(gamble)-EU(do_nothing)=+4.9*10-5

• Gambling	is	rational	because	losing	doesn’t	hurt

!!!!

€ 

U($X ) = !100
1

1+ 2%0.00001X

Convexity	&	Gambling

• Convexity:

• Suppose	x	and	y	are	in	the	convex	region	of	the	
utility	function	and	are	possible	outcomes	of	a	bet

• Current	cash	on	hand	is	x<z<y
• Suppose	bet	has	0	expected	change	in	monetary	
value:		z	=	αx	+	(1-α)y

• Will	the	bet	be	accepted?
• Utility	of	doing	nothing:	 f(z)
• Utility	of	accepting	 the	bet:	αf(x)+(1-α)f(y)

!!!!

€ 

f (αx + (1 −α)y) ≤ αf (x) + (1 −α) f (y)
0 ≤ α ≤ 1

Multiattribute	Utility	Functions

• So	far,	we	have	defined	 utility	over	states
• As	always,	there	are	 too	many	states

• We’d	 like	to	define	utility	 functions	 over	
variables	 in	some	clever	way

• What’s	a	natural	 way	to	decompose	 utility?
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Additive	Independence

• Suppose	it	makes	me	happy	to	have	my	car	clean
• Suppose	it	makes	me	happy	to	have	coffee
• U=U(coffee)+U(clean)
• It	seems	that	these	don’t	interact
• However,	suppose	there’s	a	tea	variable
• U=U(coffee)+U(tea)+U(clean)???
• Probably	not.		I’d	need	U(coffee,tea)+U(clean)

• Parallel	theory	to	decomposition	of	utilities	into	state	
variables	as	with	Bayesian	networks

Value	of	Information
• Expected	utility	of	action	a	with	evidence	E:

• Expected	utility	given	new	evidence	E’

• Value	of	knowing	E’ (Value	of	Perfect	Information)

EUE(A|E)=max
a∈A

P(Si|E,a)U(Si )
i
∑

EUE , !E (A|E,E ')=max
a∈A

P(Si|E,E ',a)U(Si )
i
∑

VPIE (E ')= P (E '|E )EUE , !E (A '|E ,E ')
!E
∑
#

$
%

&

'
(−EUE(A|E )

Previous
Expected
utility

Expected	 utility	given
New	 information
(weighted)

VPI	Example
• Should	you	pay	to	subscribe	for	traffic	
information?		Assume:
• Time	 =	money
• Cost	of	taking	highway	 to	work	 (w/o	 traffic_jam)	 =	15
• Cost	of	taking	highway	 to	work	 (w/traffic_jam)	 =	30
• Cost	of	taking	 local	 roads	to	work	=	20
• P(traffic_jam)	 =	0.15

• Two	steps:
• Determine	 optimal	decision	w/o	 information
• Estimate	 value	 of	information

VPI	for	Traffic	 Info

• Cost	of	local	roads	=	20
• Cost	of	highway	=	0.15*30	+	0.85*15	=	17.25

• Traffic	=	 true	case:	 	Take	 local	 roads;	 cost	=	20
• Traffic	=	 false	case:	 	Take	 highway;	 cost	=	15
• Expected	 cost:		0.15*20	+	0.85*15	=	15.75
• Value	 =	1.5

• Important: In	 this	case,	 the	optimal	 choice	given	 the	
information	was	 trivial.	 	In	general,	 we	 may	 to	do	more	
computation	 to	determine	 the	optimal	choice	given	 new	
information	– not	all	decisions	are	“one	shot”
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How	 Information	 is	Doled	Out
• VPI	=	Value	of	Perfect	Information
• In	practice,	information	is:

• Partial
• Imperfect

• Partial	information:
• We	learn	 about	some	state	variables,	but	don’t	learn	the	exact	state	of	the	world
• Example:		We	can	see	a	traffic	camera	 at	one	intersection,	but	we	don’t	have	

coverage	 of	our	entire	route

• Imperfect	information:
• We	learning	something	that	may	not	be	reliable
• Example:		There	may	be	a	lag	in	our	traffic	data

• Our	framework	can	handle	this	by	introducing	an	extra	variable.		(We	get	
perfect	information	about	the	observed	variable,	and	this	influences	the	
distribution	over	the	others.)

Examples	Where	Value	of	Information	is	
(should	 be)	Considered

• Medical	tests	(x-rays,	CT-scans,	mammograms,	etc.)
• Pregnancy	tests
• Pre-purchase	house/car	inspections
• Subscribing	to	Consumer	Reports
• Hiring	consultants
• Hiring	a	trainer
• Funding	research
• Checking	one’s	own	credit	score
• Checking	somebody	else’s	credit	score
• Background	checks
• Drug	tests
• Real	time	stock	prices
• Etc.

Properties	of	VPI
• VPI	is	non-negative!
• VPI	is	order	independent	
• VPI	is	not	additive

• VPI	is	easy	 to	compute	and	is	often	used	to	
determine	how	much	you	should	pay	for	one
extra	piece	of	information.		Why	is	this	myopic?

For	example,	 knowing	X	AND	Y	 together	 may	useful,	while	
knowing	 just	one	alone	may	be	useless.

More	Properties	of	VPI

• Acquiring	information	optimally	is	very	difficult

• Need	to	construct	a	conditional	plan	for	every	possible	
outcome	before	you	ask	for	even	the	first	piece	of	
information
• Suppose	you’re	 a	doctor	planning	 to	treat	 a	patient
• Picking	 the	optimal	 test	to	do	first	requires	 that	you	consider	all	
subsequent	tests	and	all	possible	treatments	 as	a	result	of	these	
tests

• General	versions	of	this	problem	are	intractable!



7

Decision	Theory	as	Search

• Can	view	DT	probs	 as	search	probs
• States	=	atomic	events

Max	nodes

Chance
nodes

P=0.5 P=0.5
P=0.6 P=0.4

P=0.9 P=0.1

DT	as	Search

• Attach	costs	to	arcs,	leaves
• Path(s)	w/lowest	 expected	 cost	=	optimal
• Minimizing	expect	cost	=	maximizing	 expected	 utility

• Expectimax:

!!!!

€ 

V(nmax ) =maxs∈succesors(n)V(s)

!!!!

€ 

V(nchance ) = V(s)
s∈succesors(n)

∑ p(s)

The	Form	of	DT	Solutions

• The	solution	to	a	DT	problem	with	many	steps	isn’t	
linear	in	the	number	of	steps.		(Why?)

• What	does	this	say	about	computational	costs?

• Can	heuristics	help?

Conclusions

• Decision	 theory	 provides	 a	framework	 for	
optimal	decision	making

• Principle:	 	Maximize	Expected	 Utility
• Easy	to	describe	 in	principle
• Application	 to	multistep	problems	 can	
require	 advanced	 planning	 and	
probabilistic	 reasoning	 techniques


