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Overview

• Bayes nets	are	(mostly)	atemporal
• Need	a	way	to	talk	about	a	world	that	
changes	over	time

• Necessary	for	planning
• Many	important	applications

– Target	tracking
– Patient/factory	monitoring
– Speech	recognition

Back	 to	Atomic	Events

• We	began	talking	about	probabilities	from	
the	perspective	of	atomic	events

• An	atomic	event	is	an	assignment	to	every	
random	variable	in	the	domain

• For	n	random	variables,	there	are	2n

possible	atomic	events

• State	variables	return	later	(briefly)

States

• When	reasoning	about	time,	we	often	call	
atomic	events	states

• States,	like	atomic	events,	form	a	mutually	
exclusive	and	jointly	exhaustive	partition	of	
the	space	of	possible	events

• We	can	describe	how	a	system	behaves	
with	a	state-transition	diagram
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State	Transition	 Diagram

S1 S2

0.75

0.25 0.5

0.5

P(S2|S1)=0.75
P(S1|S1)=0.25
P(S2|S2)=0.50
P(S1|S2)=0.50

Don’t	 confuse	states	with	 state	variables!
Don’t	 confuse	states	with	 state	variables!
Don’t	 confuse	states	with	 state	variables!

Note:	 Time	 indices	are	 implicit,	 really
P(St+1=S2|St=S1),	 etc.

Example:		Speech	Recognition

• Speech	is	broken	down	into	atoms	called	
phonemes,	e.g.,	see	arpanet:	
http://en.wikipedia.org/wiki/Arpabet

• Phonemes	are	pulled	from	the	audio	
stream	using	a	variety	of	techniques	

• Words	are	stochastic	finite	automata	
(HMMs)	with	outputs	that	are	phonemes

You	say	tomato,	 I	say…

[t] [ow] [m]

[ey]

[aa]

[t] [ow]
1.0 1.0

1.0

1.0

1.0
0.5

0.5

Real	variations	in	speech	between	speakers	can	be	much	more
subtle	and	complicated	than	this:		How	do	we	learn	these?

Using	HMMs	for	Speech	Recognition

• Create	one	HMM	for	every	word
• Upon	hearing	a	word:

– Break	down	word	into	string	of	phonemes
– Compute	probability	that	string	came	from	
each	HMM

– Go	with	word	(HMM)	that	assigns	highest	
probability	to	string
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State	Transition	 Diagrams

• Make	 a	lot	of	assumptions

– Transition	 probabilities	 don’t	 change	 over	 time	 (stationarity)

– The	 event	 space	 does	not	change	 over	 time

– Probability	 distribution	over	 next	 states	depends	 only	on	 the	
current	 state	 	(Markov	 assumption)

– Time	 moves	 in	uniform,	 discrete	 increments

The	Markov	Assumption

• Let	St be	a	random	variable	for	the	state	at	time	t

• P(St|St-1,…,S0)	=	P(St|St-1)

• (Use	subscripts	for	time;	S0	is	different	from	S0)

• Markov	is	special	kind	of	conditional	independence

• Future	is	independent	of	past	given	current	state

Markov	Models

• A	system	with	states	 that	obey	the	Markov	 assumption	is	
called	a	Markov	Model

• A	sequence	 of	states	 resulting	from	such	a	model	is	
called	a	Markov	Chain

• The	mathematical	properties	 of	Markov	 chains	are	
studied	heavily	in	mathematics,	statistics,	computer	
science,	electrical	engineering,	 etc.

What’s	The	Big	Deal?

• A	system	that	obeys	the	Markov	property	can	be	
described	succinctly	with	a	transition	matrix,	where	the	
i,jth entry	of	the	matrix	is	P(Sj|Si)

• The	Markov	property	ensures	that	we	can	maintain	this	
succinct	description	over	a	potentially	infinite	time	
sequence

• Properties	of	the	system	can	be	analyzed	in	terms	of	
properties	of	the	transition	matrix
– Steady-state	probabilities
– Convergence	rate,	etc.
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Observations
• Introduce	Et for	the	observation	at	time	t	

• Observations	 are	like	evidence

• Define	 the	probability	distribution	over	observations	as	
function	of	current	state:	 	P(E|S)

• Assume	 observations	are	conditionally	independent	of	
other	variables	given	current	state

• Assume	 observation	probabilities	are	stationary

A	Bayes	Net	View	of	HMMs

S0 S1

E0 E1

Note:	 	These	 are	 random	variables,	 not	states!

Applications

• Monitoring/Filtering:		P(St|E0…Et)
– S	is	the	current	status	of	the	patient/factory
– E	is	the	current	measurement

• Prediction:		P(St|E0…Ek),	t>k
– S	is	the	current/future	 position	of	an	object
– E	are	 our	past	observations
– Project	S	into	the	future

Applications

• Smoothing/hindsight:		P(Sk|E0…Et),	t>k
– Update	view	of	the	past	based	upon	future
– Diagnosis:		Factory	exploded	at	time	t=20,	what	
happened	at	t=5	to	cause	this?

• Most	likely	explanation
– What	is	the	most	likely	sequence	of	events	(from	
start	to	finish)	to	explain	what	we	have	seen?

– NB:		Answer	is	a	single	path,	not	a	distribution
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Example:	 	Robot	 Self	Tracking

• Consider	Roomba-like	robot	with:
– Known	map	 of	the	 room
– 4-way	 proximity	 sensors
– Unknown	 initial	 position	 (kidnapped	 robot	problem)

• We	consider	a	discretized	version	of	this	problem
– Map	discretized	 into	grid
– Discrete,	 one-square	 movements

(Images	 from	 iRobot’s web	 page)

Simple	Map,	Kidnapped	Robot

? ? ? ? ? ? ? ? ? ? ? ?

Robot	 Senses

? ? ? ? ? ? ? ? ? ? ? ?

Obstacles	up	and	down,	none	left	and	right

Robot	Updates	Distribution

? ? ? ? ? ?
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Robot	Moves	Right,	Updates

? ? ?? ? ?

Robot	Updates	Probabilities

Obstacles	up	and	down,	none	left	and	right

What	 Just	Happened

• This	was	an	example	of	robot	tracking

• We	can	also	do:
– Prediction	(where	would	the	robot	be?)
– Smoothing	(where	was	 the	robot?)
– Most	likely	path	(what	path	did	robot	take?)

Prediction

? ? ? ? ? ? ? ? ? ? ? ?

Suppose	the	Robot	Moves	Right	Twice
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New	Robot	 Position	Distribution

? ? ?? ? ?

Are	 these	 probabilities	 uniform?

What	Isn’t	Realistic	Here?

• Where	does	the	map	come	from?
• Does	the	robot	really	have	these	sensors?
• Are	right/left/up/down	the	correct	sort	of	actions?		(Even	if	the	robot	

has	a	map,	it	may	not	know	its	orientation.)
• Are	robot	actions	deterministic?
• Are	sensing	actions	deterministic?
• Would	a	probabilistic	sensor	model	conflate	sensor	noise	and	

incorrect	modeling?
• Can	the	world	be	modeled	as	a	grid?

• Good	news:		Despite	these	problems,	robotic	mapping	and	
localization	(tracking)	can	actually	be	made	to	work!

Monitoring/Prediction

S0 S1

E0 E1

We	want:

By	variable	elimination:
  !!!!

€ 

P(St |et…e0 ) = P(
S0…St −1

∑ S0…St |et…e0 )

Smoothing/Hindsight

S0 S1

E0 E1

We	want:

By	variable	elimination:

Sk

Ek

St-1

Et-1

St

Et

  !!!!

€ 

P(Sk |et…e0 ) = P(S0…St |et…e0 )
S0…Sk−1 ,SK+1…St

∑
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Most	Likely	 (Viterbi)	 Path

P(S0...St | e0…et )∝P(S0 )P(e0 | S0 ) P(Si | Si−1)P(ei | Si )
i=1

t

∏

From	 definition	 of	Bayes	 net	 (or	HMM):

Suppose	 we	want	 max	 probability	 sequence	 of	states:

Keep	distributing	max	over	product! Compare	with	Dijkstra’s
algorithm,	dynamic	programming.

𝑚𝑎𝑥 $%… $' 𝑃 𝑆* … 𝑆𝑡 𝑒* …𝑒- = 𝑚𝑎𝑥 /%…/' 𝑃 𝑆0 𝑃(𝑒* |𝑆*) ∏ 𝑃(𝑆5|-
567 𝑆587 ) 𝑃 𝑒5 𝑆5

= 𝑚𝑎𝑥 $9… $' 𝑃 𝑒- 𝑆- ∏ 𝑃(𝑆5: 7 |- 87
56 7 𝑆5) 𝑃 𝑒5 𝑆5 𝑚𝑎𝑥 $% 𝑃 𝑆7 𝑆* 𝑃(𝑆*)𝑃 𝑒* 𝑆*

=𝑚𝑎𝑥 $;…$' 𝑃 𝑒- 𝑆- ∏ 𝑃(𝑆5:7 |- 87
5 6< 𝑆5 ) 𝑃 𝑒5 𝑆5 𝑚𝑎𝑥 $9 𝑃 𝑆< 𝑆7 𝑃 𝑒7 𝑆7 𝑚𝑎𝑥 $% 𝑃 𝑆7 𝑆* 𝑃 (𝑆*)𝑃 𝑒* 𝑆*

Algebraic	View:	Our	Main	Tool

!!

€ 

P(A∧B) = P(B∧ A)
P(A |B)P(B) = P(B | A)P(A)

P(A |B) =
P(B | A)P(A)

P(B)

Conditional	 Probability	with	
Extra	 Evidence

• Recall:	 	P(AB)=P(A|B)P(B)

• Add	extra	evidence	C	
(can	be	a	set	of	variables)

• P(AB|C)=P(A|BC)P(B|C)

Extending	Bayes	Rule

!!

€ 

P(A |BC) =
P(B | AC)P(A |C)

P(B |C)

How	to	think	about	this:		The	C	is	like	“extra”	evidence.
This	forces	us	into	one	corner	of	the	event	space.
Given	that	we	are	in	this	corner,	everything	behaves	the	same.
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Using	Conditional	 Independence
And	the	Markov	Property

• Conditional	independence	w/extra	 evidence:
– P(AB|C)=P(A|BC)P(B|C)

• P(StSt-1|et-1…e0)=P(St|St-1et-1…e0)	 P(St-1|et-1…e0)	 	
=P(St|St-1)	 P(St-1|et-1…e0)

Monitoring

We	want:	 	P(St|et…e0)

!!!!

€ 

P(St |et ...e0 ) =
P(et | St ,et −1...e0 )P(St |et −1 ...e0 )

P(et |et −1 ...e0 )
= αP(et | Stet −1...e0 )P(St |et −1 ...e0 )
= αP(et | St )P(St |et −1...e0 )

= αP(et | St ) P(St | St −1)P(St −1 |et −1...e0 )
St −1

∑
Recursive

Example
• W	=	student	is	working
• R	=	student	has	produced	results
• adviser	observes	 progress
• adviser	infers	 student	status	given	observations

P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

Problem	as	a	Bayes	Net

Assume	student	starts	school	in	a	productive	(working)	state.
Prof.	has	observed	two	consecutive	months	without	results.
What	is	probability	that	student	was	working	in	the	second	month?

W1 W2W0

1r 2r
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Let’s	Do	The	Math

!!!!

€ 

P(W2 | r!2r!1) = α1P(r!2 |W2 ) P(W2 |W1)P(W1 | r!1)
W1

∑

P(W1 | r!1) = α2P(r!1 |W1) P(W1 |W0 )P(W0 )
W0

∑

P(w1 | r!1) = α20.4(0.8*1.0+ 0.3*0.0) = α2 0.32
P(w!1 | r!1) = α20.8(0.2*1.0+ 0.7*0.0) = α2 0.16
P(w1 | r!1) = 0.67,P(w!1 | r!1) = 0.33

P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

More	Math

!!!!

€ 

P(Wt +1 |Wt ) = 0.8
P(Wt +1 |W!t ) = 0.3
P(R |W) = 0.6
P(R |W!) = 0.2
P(w1 | r!1) = 0.67
P(w!1 | r!1) = 0.33

!!!!

€ 

P(W2 | r!2r!1) = α1P(r!2 |W2 ) P(W2 |W1)P(W1 | r!1)
W1

∑

P(w2 | r!2r!1) = α10.4(0.8*0.67+ 0.3*0.33) = α10.25
P(w!2 | r!2r!1) = α10.8(0.2*0.67+ 0.7*0.33) = α10.292
P(w2 | r!2r!1) = 0.46,P(w!2 | r!2r!1) = 0.54

Hindsight

!!!!

€ 

P(Sk |et ...e0 ) = αP(et ...ek+1 | Sk,ek ...e0 )P(Sk |ek ...e0 )
!!!!!!!!!!!!!!!!!!!!!! = αP(et ...ek+1 | Sk)P(Sk |ek ...e0 )

P(et ...ek+1 | Sk ) = P(
Sk+1

∑ et ...ek+1 | SkSk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(
Sk+1

∑ et ...ek+1 | Sk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(ek+1 | Sk+1)P(
Sk+1

∑ et ...ek+2 | Sk+1)P(Sk+1 | Sk )
Recursive

Monitoring!

Hindsight Summary

• Forward:		Compute	k	state	distribution	given
– Forward	distribution	up	to	k
– Observations	up	to	k
– Equivalent	to	monitoring	up	to	k
– Equivalent	to	eliminating	variables	<k

• Backward:	Compute	conditional	evidence	distribution	after	k
– Work	backward	from	t	to	k
– Equivalent	to	eliminating	variables	>k

• Smoothed	state	distribution	is	proportional	to	product	of	
forward	and	backward	components
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Problem	 II

Can	we	 revise	 our	estimate	 of	the	 probability	 that	 the	student
worked	 at	 step	1?

We	 initially	 thought:

Since	 the	student	didn’t	 have	 results	at	 time	 2,	is	 it	now
less	 likely	 that	he	was	 working	 at	 time	 1?

!!!!

€ 

P(w1 | r!1) = 0.67,P(w!1 | r!1) = 0.33

Let’s	Do	More	Math

!!!!

€ 

P(Wt +1 |Wt ) = 0.8
P(Wt +1 |W!t ) = 0.3
P(R |W) = 0.6
P(R |W!) = 0.2
P(w1 | r!1) = 0.67
P(w!1 | r!1) = 0.33

P (W1|r2r1)=αP (W1|r1)P (r2|W1)

P (r2|w1)= P (r2|W2)
W2

∑ P (W2|w1)

P (r2|w1)= (0.4*0.8+0.8*0.2)= 0.48

P (r2|w1)= (0.4*0.3+0.8*0.7)= 0.68

P (w1|r2r1)=α0.67*0.48=α0.3216
P (w1|r2r1)=α0.33*0.68=α0.2244
P (w1|r2r1)= 0.59,P (w1|r2r1)= 0.41

Checkpoint

• Done:		Forward	Monitoring	and	Backward	 Smoothing

• Monitoring	is	recursive	from	the	past	to	the	present
• Backward	smoothing	requires	two	recursive	passes
• Called	the	forward-backward	 algorithm

– Independently	discovered	many	times	throughout	history
– Same	as	forward/backward	for	Bayes	nets!!!
– Was	classified	for	many	years	by	US	Govt.

• Equivalent	to	doing	variable	elimination!

What’s	Left?

• We	have	seen	 that	filtering	and	smoothing	can	be	done	
efficiently,	so	what’s	the	catch?

• We’re	still	working	at	the	level	of	atomic	events

• There	are	too	many	atomic	events!

• We	need	a	generalization	of	Bayes	nets	to	let	us	think	
about	the	world	at	the	level	of	state	variables	and	not	
states
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Dynamic	Bayes	Nets

X

Y

Z

State	 Variables

Time t t+1

!!

€ 

P(z') !!

€ 

P(z')

!!

€ 

ytzt

!!

€ 

yt zt

!!

€ 

ytzt
!!

€ 

yt zt

250.

50.

60.

30. 70.

40.

50.

750.

X’

Y’

Z’

CPT

Working	With	DBNs

Can	we	 do	variable	 elimination	 for	DBNs?

Harsh	Reality

• While	BN	inference	 in	the	static	case	was	 a	very	nice	
story,	there	are	essentially	 no	tractable,	exact	
algorithms	for	DBNs

• Active	research	 area:
– Approximate	inference	algorithms

• Variational methods
• Assumed	 density	filtering	(ADF)

– Sampling	methods
• Sequential	Importance	sampling
• Sequential	Importance	Sampling	with	Resampling
(SISR,	particle	filter,	condensation,	 etc.)

Continuous	Variables

• How	do	we	represent	a	probability	distribution	over	a	
continuous	variable?
– Probability	density	function
– Summations	become	integrals

• Very	messy	except	for	some	special	cases:
– Distribution	over	variable	X	at	time	t+1	is	a	multivariate	
normal	with	a	mean	that	is	a	linear	function	of	the	variables	
at	the	previous	time	step

– This	is	a	linear-Gaussian	model
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Inference	in	Linear	Gaussian	Models

• Filtering	and	smoothing	integrals	have	closed	
form	solution

• Elegant	solution	known	as	the	Kalman filter
– Used	 for	tracking	projectiles	(radar)
– State	is	modeled	as	a	set	 of	linear	equations

• S=vt
• V=at

– What	about	pilot	controls?

Related	Topics

• Continuous	time
– Need	to	model	system	using	differential	equations

• Non-stationarity
– What	if	the	model	changes	over	time?
– This	touches	on	learning

• What	about	controlling	the	system	w/actions?
– Markov	decision	processes

HMM	Conclusion

• Elegant	algorithms	for	temporal	reasoning	over	discrete	atomic	
events,	Gaussian	continuous	variables

(many	practical	systems	are	such)

• Exact	Bayes net	methods	don’t	generalize	well	to	state	variable	
representation	in	the	the	temporal	case:	little	hope	for	exponential	
savings

• Approximate	inference	for	large	systems	is	an	active	area	of	research


