## COMPSCI 570

Instructor: Ronald Parr

Homework 4
Due: Tuesday, October 4, 2016

## 1 Submodularity I

Is the set of submodular functions closed under addition? Prove or disprove.

## 2 Submodularity II

Is the set of submodular functions closed under multiplication? Prove or disprove.

## 3 Greedy Approximation

Consider a version of the set cover problem where the sets are partitioned into two types, red and blue. We still evaluate a cover by the number of atoms it covers, but we require that a cover use sets of only one color. If a cover uses sets of two different colors, it gets a score of zero. a) Explain precisely why the standard, greedy algorithm and analysis do not apply here. b) Provide a simple, polynomial time algorithm that does provide a reasonable performance guarantee.

## 4 Conditional Probability I

An airport terminal robot has been programmed to recognize dangerous devices and "disable" them. The robot is only used when there is a strong possibility that a dangerous object is present, and in such cases it is estimated that $2.1 \%$ of the objects it will analyze are indeed dangerous. In test cases, the robot has correctly identified dangerous objects as dangerous $87 \%$ of the time. However, it has also identified objects that are not dangerous as dangerous $5.2 \%$ of the time. What is the probability that an object identified as dangerous will actually be dangerous?

For the next three questions, we will use the following probability distribution:

| Atomic Event | Probability |
| :---: | :---: |
| $P(\overline{a b c})$ | $\frac{1}{8}$ |
| $P(\overline{a b} c)$ | $\frac{1}{8}$ |
| $P(\bar{a} b \bar{c})$ | $\frac{1}{6}$ |
| $P(\bar{a} b c)$ | $\frac{1}{12}$ |
| $P(a \overline{b c})$ | $\frac{3}{16}$ |
| $P(a \bar{b} c)$ | $\frac{3}{16}$ |
| $P(a b \bar{c})$ | $\frac{1}{12}$ |
| $P(a b c)$ | $\frac{1}{24}$ |

## 5 Conditional Probability II

Prove that $C$ is conditionally independent of $A$ given $B$. Note: This is a little tedious because you need to compute a lot of things to prove this, but it's not hard. The fractions were chosen to make the arithmetic simple.

## 6 Bayes Nets I

Provide the conditional probability tables for a Bayesian network for this distribution where variable $C$ has $B$ as its only parent, variable $B$ has variable $A$ as its only parent, and variable $A$ has no parents.

## 7 Bayes nets II

Use variable elimination to compute $P(C)$ and verify that you get the same answer as what you get by summing the appropriate entries from the table above.

