

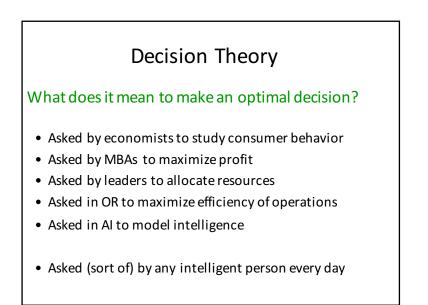
The Winding Path to RL

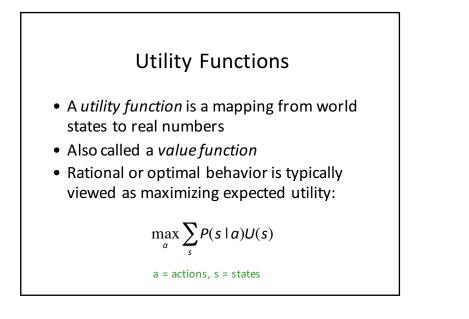
- Decision Theory
 Descriptive theory of optimal behavior
- Markov Decision Processes
 Mathematical/Algorithmic realization of
 Decision Theory
- Reinforcement Learning
- Application of learning techniques to challenges of MDPs with numerous or

unknown parameters

Covered Today

- Decision Theory Review
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

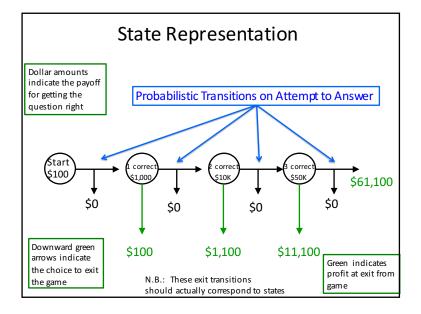




Swept under the rug today

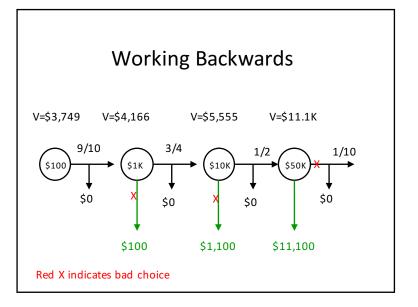
- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"



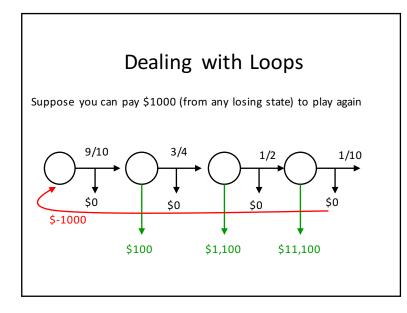
Making Optimal Decisions

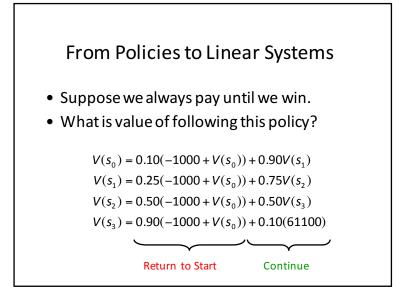
- Work *backwards* from future to present
- Consider \$50,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$61.1K = \$6.11K
- Optimal decision stops

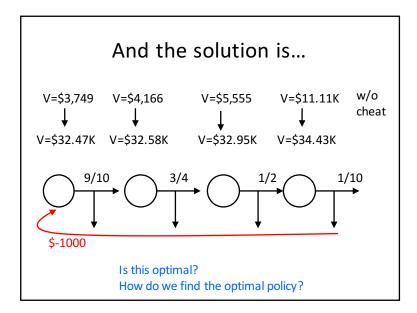


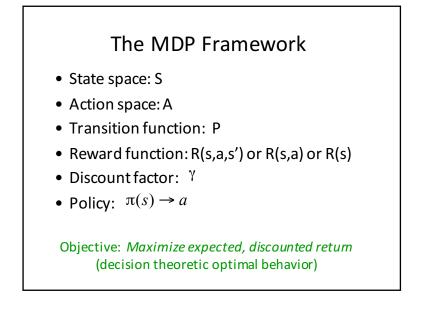
Decision Theory Review

- Provides theory of optimal decisions
- Principle of maximizing utility
- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities









Applications of MDPs

• Al/Computer Science

- Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto & Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t|A_{t-1}S_{t-1},...,A_0S_0) = P(S_t|A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying
 - Suppose ϵ probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1- ϵ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we'll see later
 - Leads to slightly myopic policies
- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

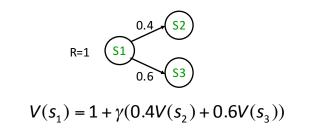
- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Value Determination

Determine the value of each state under policy π

$$V(s) = R(s,\pi(s)) + \gamma \sum\nolimits_{s'} P(s' \mid s,\pi(s)) V(s')$$

Bellman Equation for a fixed policy π



Matrix Form

$$\mathbf{P} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

 $\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$

This is a generalization of the game show example from earlier How do we solve this system efficient? Does it even have a solution?

Solving for Values $V = \gamma P_{\pi} V + R$ For moderate numbers of states we can solve this system exacty: $V = (I - \gamma P_{\pi})^{-1} R$ Guaranteed invertible because γP_{π} has spectral radius <1

Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because P_{π} has spectral radius <1

Establishing Convergence

- Eigenvalue analysis (don't worry if you don't know this)
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...

Contraction Analysis Define maximum norm

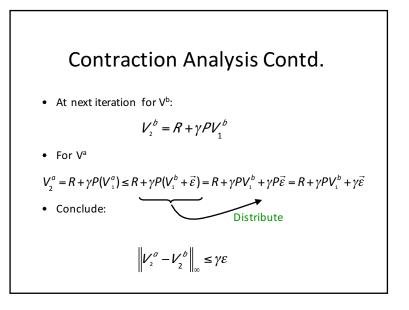
$$\|V\|_{\infty} = \max_{i} V[i]$$

• Consider V1 and V2

$$\left\| \boldsymbol{V}_{i}^{a} - \boldsymbol{V}_{i}^{b} \right\|_{\infty} = \varepsilon$$

• WLOG say

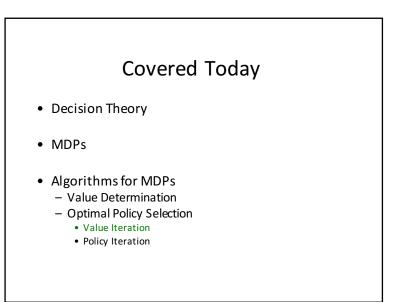
$$V_{j}^{a} \leq V_{j}^{b} + \vec{\varepsilon}$$
 (Vector of all ε 's)

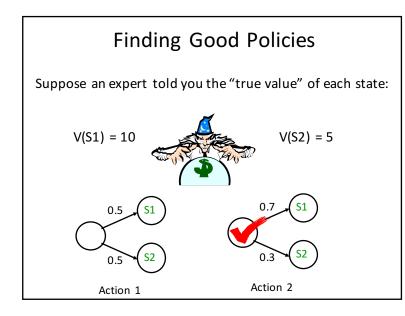


Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point (value doesn't change with iteration)
- Max norm distance from V* decreases *dramatically* quickly with iterations

$$\left\| \mathcal{V}_0 - \mathcal{V}^* \right\|_{\infty} = \mathcal{E} \longrightarrow \left\| \mathcal{V}_n - \mathcal{V}^* \right\|_{\infty} \le \gamma^n \mathcal{E}$$





Improving Policies • How do we get the optimal policy? • If we knew the values under the optimal policy, then just take the optimal action in every state • How do we define these values? • Fixed point equation with choices (Bellman equation): $V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s' | s,a) V^*(s')$

Decision theoretic optimal choice given V* If we know V*, picking the optimal action is easy If we know the optimal actions, computing V* is easy How do we compute both at the same time?

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V^{i+1}(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s' | s,a) V^{i}(s')$$

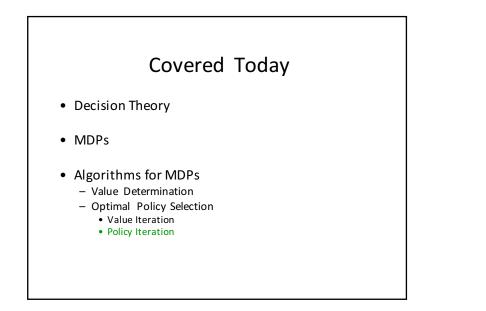
•Called *value iteration* or simply *successive approximation* •Same as value determination, but we can *change* actions

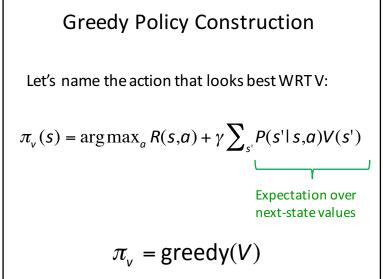
•Convergence:

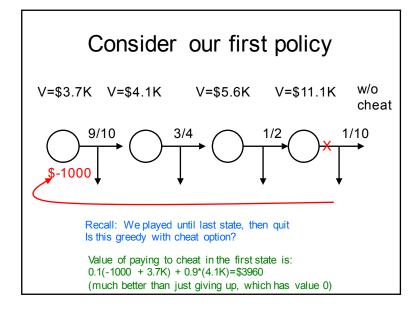
- Can't do eigenvalue analysis (not linear)
- Still monotonic
- Still a contraction in max norm (exercise)
- Converges quickly

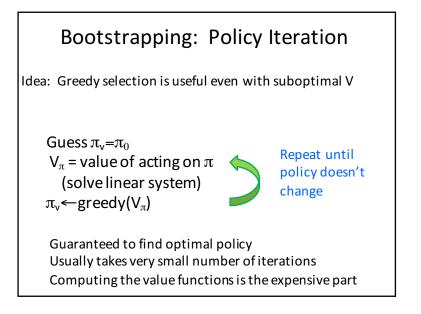
Properties of Value Iteration

- VI converges to the optimal policy (implicit in the maximizing action at each state)
- Why? (Because we figure out V*)
- Optimal policy is stationary (i.e. Markovian depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it's better to change actions the second time you visit a state. Why didn't you just take the best action the first time?)









Comparing VI and PI

• VI

- Value changes at every step
- Policy may change at every step
- Many cheap iterations
- PI
 - Alternates policy/value updates
 - Solves for value of each policy *exactly*
 - Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is *shockingly* fast in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ (we didn't prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take O(n) iterations in practice
 Recent results indicate ~O(n²a/1-γ) worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

MDP Difficulties \rightarrow Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies

Advanced Topics

- Multiple agents
- Reinforcement Learning
- Partial observability