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Markov	Decision	Processes
(MDPs)

Ron	Parr
CPS	570

The	Winding	Path	to	RL
• Decision	Theory

• Markov	Decision	Processes

• Reinforcement	Learning

• Descriptive	theory	of	optimal	behavior

• Mathematical/Algorithmic	realization	of	
Decision	Theory

• Application	of	learning	techniques	to	
challenges	of	MDPs	with	numerous	or	
unknown	parameters

Covered	 Today

• Decision	Theory	 Review

• MDPs

• Algorithms	for	MDPs
– Value	Determination
– Optimal	Policy	Selection

• Value	Iteration
• Policy	Iteration

Decision	Theory

• Asked	by	economists	to	study	consumer	behavior
• Asked	by	MBAs	 to	maximize	profit
• Asked	by	leaders	to	allocate	resources
• Asked	in	OR	to	maximize	efficiency	of	operations
• Asked	in	AI	to	model	intelligence

• Asked	(sort	of)	by	any	intelligent	person	every	day

What	does	it	mean	to	make	an	optimal	decision?
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Utility	Functions

• A	utility	function is	a	mapping	from	world	
states	to	real	numbers

• Also	called	a	value	function
• Rational	or	optimal	behavior	is	typically	
viewed	as	maximizing	expected	utility:

!!

€ 

max
a

P(s |a)U(s)
s
∑

a	=	actions,	 s	=	 states

Swept	under	the rug	today

• Utility	of	money	(assumed	1:1)

• How	to	determine	costs/utilities

• How	to	determine	probabilities

Playing	 a	Game	Show

• Assume	series	of	questions
– Increasing	difficulty
– Increasing	payoff

• Choice:
– Accept	accumulated	earnings	and	quit
– Continue	and	risk	losing	everything

• “Who	wants	to	be	a	millionaire?”

State	Representation

Start
$100

$0 $0 $0 $0

$100 $1,100 $11,100

$61,100

Dollar	amounts
indicate	the	payoff
for	getting	the	
question	right

Downward	green
arrows	indicate	
the	choice	to	exit
the	game

Green	 indicates
profit	at	exit	from
game

Probabilistic	Transitions	on	Attempt	to	Answer

1	correct
$1,000

2	correct
$10K

3	correct
$50K

N.B.:		These	exit	transitions
should	actually	correspond	to	states



3

Making	Optimal	Decisions

• Work	backwards from	future	to	present

• Consider	$50,000	question
– Suppose	 P(correct)	 =	1/10
– V(stop)=$11,100
– V(continue)	 =	0.9*$0	+	0.1*$61.1K	=	$6.11K

• Optimal	decision	stops

Working	Backwards

$0 $0 $0 $0

$100 $1,100 $11,100

1/10
X

V=$11.1K

1/2

X

V=$5,555

3/4

V=$4,166

X

V=$3,749

9/10
$100 $1K $10K $50K

Red	X	indicates	bad	choice

Decision	 Theory	Review

• Provides	theory	of	optimal	decisions

• Principle	of	maximizing	utility

• Easy	for	small,	tree	structured	spaces	with
– Known	utilities
– Known	probabilities

Covered	in	Today

• Decision	Theory

• MDPs

• Algorithms	for	MDPs
– Value	Determination
– Optimal	Policy	Selection

• Value	Iteration
• Policy	Iteration
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Dealing	 with	Loops

$0 $0 $0 $0

$100 $1,100 $11,100

1/101/23/4

Suppose	 you	can	pay	$1000	(from	any	 losing	state)	 to	play	again

$-1000

9/10

From	Policies	to	Linear	Systems

• Suppose	we	always	pay	until	we	win.
• What	is	value	of	following	this	policy?

!!!!

€ 

V(s0 ) = 0.10(−1000+V(s0 )) + 0.90V(s1)
V(s1) = 0.25(−1000+V(s0 )) + 0.75V(s2 )
V(s2 ) = 0.50(−1000+V(s0 )) + 0.50V(s3 )
V(s3 ) = 0.90(−1000+V(s0 )) + 0.10(61100)

Return	 to	Start Continue

And	the	solution	is…

1/101/23/4

$-1000

V=$34.43KV=$32.95KV=$32.58KV=$32.47K

w/o
cheat

9/10

Is	this	optimal?
How	do	we	find	the	optimal	policy?

V=$11.11KV=$5,555V=$4,166V=$3,749

The	MDP	Framework
• State	space:	S
• Action	space:	A
• Transition	function:		P
• Reward	function:	R(s,a,s’)	or	R(s,a)	or	R(s)
• Discount	factor:	
• Policy:		

γ

as →π )(

Objective:		Maximize	expected,	discounted	return	
(decision	theoretic	optimal	behavior)
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Applications	 of	MDPs

• AI/Computer	Science
– Robotic	control
(Koenig	 &	Simmons,	 Thrun	 et	al.,	 Kaelbling	 et	al.)

– Air	Campaign	 Planning	 (Meuleau	 et	al.)
– Elevator	 Control	 (Barto	 &	Crites)
– Computation	 Scheduling	 (Zilberstein	 et	al.)
– Control	and	Automation	 (Moore	 et	al.)
– Spoken	 dialogue	 management	 (Singh	 et	al.)
– Cellular	 channel	 allocation	 (Singh	&	Bertsekas)

Applications	of	MDPs

• Economics/Operations	Research
– Fleet	maintenance	(Howard,	Rust)
– Road	maintenance	(Golabi	et	al.)
– Packet	Retransmission	(Feinberg	et	al.)
– Nuclear	plant	management		(Rothwell	&	Rust)

Applications	 of	MDPs

• EE/Control
– Missile	defense	 (Bertsekas	 et	al.)
– Inventory	management	 (Van	 Roy	et	al.)
– Football	play	selection	(Patek	&	Bertsekas)

• Agriculture
– Herd	management	 (Kristensen,	Toft)

The	Markov	Assumption

• Let	St be	a	random	variable	for	the	state	at	time	t

• P(St|At-1St-1,…,A0S0)	=	P(St|At-1St-1)

• Markov	is	special	kind	of	conditional	independence

• Future	is	independent	of	past	given	current	state
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Understanding	 Discounting

• Mathematical	 motivation
– Keeps	values	bounded
– What	if	I	promise	you	$0.01	every	day	you	visit	me?

• Economic	 motivation
– Discount	 comes	 from	inflation
– Promise	 of	$1.00	in	future	is	worth	$0.99	today

• Probability	 of	dying
– Suppose	 ε probability	of	dying	at	each	decision	interval
– Transition	w/prob ε to	state	with	value	0
– Equivalent	to	1- ε discount	factor

Discounting	in	Practice

• Often	chosen	unrealistically	low
– Faster	convergence	of	the	algorithms	we’ll	see	later
– Leads	to	slightly	myopic	policies

• Can	reformulate	most	algs.	for	avg.	reward
– Mathematically	uglier
– Somewhat	slower	run	time

Covered	 Today

• Decision	Theory

• MDPs

• Algorithms	for	MDPs
– Value	Determination
– Optimal	Policy	Selection

• Value	Iteration
• Policy	Iteration

Value	Determination

!!

€ 

V(s) = R(s,π(s)) + γ P(s' | s,π(s))V(s')
s'

∑
Bellman	Equation	for	a	fixed	policy	π

S1

S2

S3

0.4

0.6

R=1

!!!!

€ 

V(s1) = 1+γ(0.4V(s2 ) + 0.6V(s3 ))

Determine	the	value	of	each	state	under	policy	π
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Matrix	 Form

!!!!!!

€ 

P =

P(s1 | s1,π(s1)) P(s2 | s1,π(s1)) P(s3 | s1,π(s1))
P(s1 | s2,π(s2 )) P(s2 | s2,π(s2 )) P(s3 | s2,π(s2 ))
P(s1 | s3,π(s3 )) P(s2 | s3,π(s3 )) P(s3 | s3,π(s3 ))

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

!!

€ 

V = γPπV +R
This	 is	a	generalization	 of	 the	game	 show	example	 from	earlier

How	do	we	 solve	 this	system	 efficient?	 	Does	it	even	 have	 a	 solution?

Solving	for	Values

!!

€ 

V = γPπV +R
For	moderate	numbers	of	states	we	can	solve	this	system	exacty:

!!!!

€ 

V = (I −γPπ )
−1R

Guaranteed	 invertible	 because
has	spectral	 radius	<1

πγP

Iteratively	 Solving	for	Values

!!

€ 

V = γPπV +R
For	larger	numbers	of	states	we	can	solve	this	system	indirectly:

!!!!!!

€ 

V i+1 = γPπV i +R

Guaranteed	convergent	because
has	spectral	radius	<1

πγP

Establishing	Convergence

• Eigenvalue	analysis
(don’t	worry	if	you	don’t	know	this)

• Monotonicity
– Assume	all	values	start	pessimistic
– One	value	must	always	increase
– Can	never	overestimate
– Easy	to	prove

• Contraction	analysis…
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Contraction	 Analysis

• Define	maximum	norm

• Consider	V1	and	V2

• WLOG	say

V
∞
=maxi V [i ]

Vi
a ≤Vi

b +

ε

Vi
a −Vi

b

∞
=ε

(Vector	 of	all	ε’s)

Contraction	Analysis	Contd.

• At	next	iteration	 for	Vb:

• For	Va

• Conclude:

V2
a =R+γP(Va

1 )≤R+γP(V1
b +
!
ε )=R+γPV1

b +γP
!
ε =R+γPV1

b +γ
!
ε

V2
b =R +γPV1

b

V2
a −V2

b

∞
≤γε

Distribute

Importance	 of	Contraction

• Any	two	value	 functions	get	closer

• True	 value	function	V*	is	a	fixed	point
(value	 doesn’t	change	with	iteration)

• Max	 norm	distance	from	V*	decreases
dramatically quickly	with	iterations

V0 −V
*

∞
=ε→ Vn −V

*

∞
≤γ nε

Covered	Today

• Decision	Theory

• MDPs

• Algorithms	for	MDPs
– Value	Determination
– Optimal	Policy	Selection

• Value	Iteration
• Policy	Iteration
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Finding	Good	Policies

Suppose	 an	expert	 told	you	the	“true	value”	of	each	state:

V(S1)	 =	10 V(S2)	 =	5

S1

S2

Action	1

0.5

0.5

S1

S2

Action	2

0.7

0.3

Improving	Policies

• How	do	we	 get	 the	optimal	policy?
• If	we	 knew	the	values	under	 the	optimal	policy,	 then	just	take	 the	

optimal	action	 in	every	 state
• How	do	we	 define	 these	values?
• Fixed	point	equation	with	choices	(Bellman	 equation):

V *(s)=maxa R(s,a)+γ P(s'|s,a)V *(s')
s'∑

Decision	theoretic	optimal	choice	given	V*
If	we	know	V*,	picking	the	optimal	action	is	easy
If	we	know	the	optimal	actions,	computing	V*	is	easy
How	do	we	compute	both	at	the	same	time?

Value	 Iteration

V i+1 (s)=maxa R(s,a)+γ P(s'|s,a)V i (s')
s'∑

•Called	value	iteration or	simply	successive	approximation
•Same	as	value	determination,	but	we	can	change actions

•Convergence:
• Can’t	do	eigenvalue analysis	(not	linear)
• Still	monotonic
• Still	a	contraction	in	max	norm	(exercise)
• Converges quickly

We	can’t	solve	the	system	directly	with	a	max	in	the	equation
Can	we	solve	it	by	iteration?

Properties	of	Value	Iteration

• VI	converges	to	the	optimal	policy
(implicit	in	the	maximizing	action	at	each	state)

• Why?		(Because	we	figure	out	V*)

• Optimal	policy	is	stationary (i.e.	Markovian – depends	only	on	current	state)

• Why?	(Because	we	are	summing	utilities.		Thought	experiment:		Suppose	
you	think	it’s	better	to	change	actions	the	second	time	you	visit	a	state.		
Why	didn’t	you	just	take	the	best	action	the	first	time?)
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Covered	 Today

• Decision	Theory

• MDPs

• Algorithms	for	MDPs
– Value	 Determination
– Optimal	 Policy	Selection

• Value	Iteration
• Policy	Iteration

Greedy	Policy	Construction

Let’s	name	the	action	that	looks	best	WRT	V:

!!

€ 

πv (s) = argmaxa R(s,a) + γ P(s' | s,a)V(s')
s'

∑

Expectation	over
next-state	values

!!!!

€ 

πv = greedy(V)

Consider our first policy

1/101/23/4

$-1000

V=$11.1KV=$5.6KV=$4.1KV=$3.7K w/o
cheat

9/10

Recall:  We played until last state, then quit
Is this greedy with cheat option?

X

Value of paying to cheat in the first state is:
0.1(-1000 + 3.7K) + 0.9*(4.1K)=$3960
(much better than just giving up, which has value 0)

Bootstrapping:		Policy	Iteration

Guaranteed	to	find	optimal	policy
Usually	takes	very	small	number	of	iterations
Computing	the	value	functions	is	the	expensive	part

Guess	πv=π0

Idea:		Greedy	selection	is	useful	even	with	suboptimal	V

Vπ =	value	of	acting	on	π
(solve	linear	system)

πv←greedy(Vπ)

Repeat	until
policy	doesn’t
change
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Comparing	 VI	and	PI

• VI
– Value	changes	at	every	step
– Policy	may change	at	every	step
– Many	cheap	iterations

• PI
– Alternates	policy/value updates
– Solves	for	value	of	each	policy	exactly
– Fewer,	slower	iterations	(need	to	invert	matrix)

• Convergence
– Both	are	contractions	 in	max	norm
– PI	is	shockingly fast	in	practice

Computational	Complexity

• VI	and	PI	are	 both	contraction	mappings	w/rate	 γ
(we	didn’t	prove	 this	for	PI	in	class)

• VI	costs	less	per	iteration

• For	n	states,	a	actions	PI	 tends	to	take	 O(n)	iterations	 in	practice
– Recent	results	indicate	~O(n2a/1-γ)	worst	case
– Interesting	aside:		Biggest	insight	into	PI	came	~50	years	after	the	algorithm	

was	introduced

MDP	Difficulties	 	→
Reinforcement	 Learning

• MDP	operate	 at	the	level	of	states
– States	=	atomic	events
– We	usually	have	exponentially	(or	infinitely)	many	of	these

• We	assume	 P	and	R	are	 known

• Machine	learning	to	the	rescue!
– Infer	P	and	R	(implicitly	or	explicitly	from	data)
– Generalize	from	small	number	of	states/policies

Advanced	Topics

• Multiple	agents

• Reinforcement	Learning

• Partial	observability


