NP Hardness/Completeness
Overview

Ron Parr
CompSci 570

Why Study NP-hardness

NP hardness is not an Al topic

It's important for all computer scientists

Understanding it will deepen your understanding of Al (and
other CS) topics

You will be expected to understand its relevance and use for
Al problems

Eatyour vegetables; they’re good for you

P and NP

P and NP are about decision problems

P is set of problems that can be solved in polynomial time
NP is a superset of P

NP is the set of problems that:

— Have solutions which can be verified in polynomial time or,
equivalently,

— can besolved by a non-deterministic Turing machine in
polynomial time

Roughly speaking:

— Problems in P are tractable — can be solved in a reasonable
amount of time, and faster computers help

— Some problems in NP might notbe tractable

Scaling

10000 T T T T

xX**2
2%¥x
8000 - b

6000 - b

4000 B

2000 b

9/5/16

Isn’t P big?

P includes O(n), O(n?), O(n'), O(n%), etc.
Clearly O(n'°) isn’t something to be excited about
—not practical

* Computer scientists are very clever at making
things that are in P efficient

* Firstalgorithmsfor somefroblemsare often
quite expensive, e.g., O(n°), but research often
brings this down

NP-hardness

Many problems in Al are NP-hard (or worse)
What does this mean?
These are some of the hardest problems in CS

Identifying a problem as NP hard means:
— You probably shouldn’t waste time tryingto find a
polynomial time solution
— If you find a polynomial time solution, either
* You have abug
* Find a place on your shelf for your Turing award
NP hardness is a major triumph (and failure) for
computer science theory

NP-hardness

* Why itis a failure:
— Huge class of problems with no known efficient solutions

— We have failed, as a community, find efficientsolutions or prove
that none exist

* Why itis a triumph:
— Developed a precise language for talking about these problems
— Developed sophisticated ways to reason about and categorize
the problems we don’t know how to solve efficiently
— Developing an arsenal of approximation algorithms for hard
problems

Understanding the class NP

* A class of decision problems (Yes/No)

* Solutions can be verified in polynomial time

* Examples:
— Graph coloring:
Q
SA
NSW
T _, v

— Sortedness: [1234587]

9/5/16

What is NP hardness?

* An NP hard problemis at least has hard as the hardest
problemsinNP

* Thehardest problemsinNP are NP-complete
(no known poly time solution)

* Demonstrate hardness via reduction
— Useone problem to solve another
— Ais reduced to B, if we can use B to solve A:

Poly-time
Alinstance —> |[xformation _—

— _/
V

poly time A solver if Bis poly time

Reductions
A instance —_— :ler\::ia:ifn .
— /
~

poly time A solver if Bis poly time

* If Bis NP-hard and A is of unknown difficulty,
what does this tell us?

* If Ais NP-hard, and B is of unknown difficulty,
what does this tell us?

Hardness vs. Completeness

* For something to be NP-complete, must be NP-
hard and in NP

* If something is NP-hard, it could be even harder
than the hardest problems in NP

* Proving completeness is stronger theoretical
result — says more about the problem

Examples of NP-Complete Problems

* >3 coloring

e > 3SAT

* Clique

* Set cover & vertex cover
* Traveling salesman

* Knapsack

* Subset sum

* Many, many, more...

9/5/16

SAT-The First NP-Complete Problem

* Given a set of binary variables

* Conjunction of disjunctions of these variables

(x1 VX3V x7) A X1V X152V Xg) A -

* Does there exist a satisfying assignment?
(assignment that makes the expression
evaluate to true)

Cook’s Result in a Cartoon

| ormaon | ——
™, X, poly timé—— | ytormation SAT Instance

runtime bound

—_ _
~
Assumptions: TM is a non-deterministic Turing machine with
polynomial run time, ie., a solver for problems in NP.

Poly time solver for SAT would solve any problem in
NP in Poly time

How To Prove SAT is NP-Complete?

* Note: Clearly inNP

* Challenge: Nothing fromwhich toreduce because this
was the first NP-complete problem

* |dea(Cook 1971):
— Input:
* Any non-deterministic Turing machine - TM
* Any input to that Turing machine - X
* A polynomial bound on the run time of the machine
— Output: A polynomial size SAT expression which evaluates
to true IFF TM accepts X
* Conclusion:Solving SAT in poly time implies solving any
problem inNP inpoly time

Why NP-completeness is SO important

* All NP-complete problems:
— Arein NP
— Got there by poly time transformation

— Can solve any other problem in NP after poly time
transformation

* Solving any one NP-complete problem in poly time
unlocks ALL NP-complete problems!

* Cracking just one means P=NP!

9/5/16

P=NP?

Biggest open question in CS

Can NP-complete problems be solved in
polynomial time?

Probably not, but nobody has been able to
prove it yet

Recent attempt at proof detailed in NY Times,
one of many false starts:

http://www.nytimes.com/2009/10/08/science
/Wpolynom.html

How challenging is “P=NP?”

* Princeton University CS department
*See: http://www.cs.princeton.edu/general/bricks.php
* Photo from: htipy/stuckinthebubbleblogspot.com/2009/07 /three-interesting-points-on-princeton.html

Generalization

Show problem Ais NP-hard because known NP-hard
problem B is a special case of A

Example: SAT generalizes 3SAT
— Every valid 3SAT instance is avalid SAT instance

— Apoly-time SAT solver would, therefore, ALSO be a poly
time 3SAT solver

— Conclusion: SAT is at least as hard as 3SAT: NP-hard

How does this relate to reductions?

Reduction: 3SAT -> Ind. Set

* Independent set: Given G=(V,E), does there

exist a set of vertices of size k such that no
two share an edge?

* Reduce 3SAT to independent set:

— 3 nodes for each clause (corresponding to variable
settings), and connect them in a 3-clique

— Connect all nodes with complementary settings of
the same variable

— Pick k = # of clauses

9/5/16

k-clique -> Subgraph Isomorphism

k-clique: Given G=(V,E), dthere exist a fully
connected component of size k?

Subgraphisomorphism: Given graphsG and H,
does there exist a subgraph of G thatis
isomorphic toH

(isomorphic = identical up to node relabelings)

On board

Optimization vs. Decision

Optimization: Find the largest clique

Decision: Does there exist a clique of size k

NP is a family of decision problems

In many cases, we can

Weak vs. Strong Hardness

Some problems can be brute-forced if the range of
numbersinvolved is not large (note: rangeis
exponentialininputsize)

Subset sum: 3 subset of a group of natural numbers
that sumsto k?

— Usedynamic programming

— Answer question for 1..,j

— Build answer for j+1 from answers to 1...j

— Build up to k

Such problems are weakly NP-hard

What’s harder still?

P-space hardness

Algorithms in P-space require polynomial space

Why is this at leastas hard as P-time?

Still harder: exp-time

9/5/16

How To Avoid Embarrassing Yourself

Don’t say: “I proved that it requires exponential time.” if you really meant:

— “I proved it's NP-Hard/Complete”
— “The best solution | could come up with takes exponential time”

Don’t say: “The problem is NP” (which doesn’t even make sense) if you
really meant:

“Problem is in NP” (often a weak statement)

“The problem NP-Hard/Complete” (usually a strong statement)

Don’t reduce new problems to NP-hard complete problems if you meant
to prove the new problem is hard

Such a reduction is backwards. What you really proved is that you can use
a hard problem to solve an easy one. Always think carefully about the
direction of your reductions

NP-Completeness Summary

* NP-completenesstellsus that a problem belongs to
class of similar, hard problems.

* Whatif you find that a problem is NP hard?
— Look for good approximations with provable guarantees
— Find different measures of complexity

— Look for tractable subclasses
— Use heuristics — try to do well on “most” cases

9/5/16

