
9/5/16

1

NP	Hardness/Completeness	
Overview

Ron	Parr
CompSci 570

Why	Study	NP-hardness

• NP	hardness	is	not	an	AI	topic

• It’s	important	 for	all	computer	 scientists
• Understanding	 it	will	deepen	your	understanding	 of	AI	(and	

other	 CS)	topics
• You	will	 be	expected	 to	understand	 its	relevance	and	use	for	

AI	problems

• Eat	your	vegetables;	they’re	 good	for	you

P	and	NP
• P	and	NP	are	about	decision	problems
• P	is	set	of	problems	that	can	be	solved	in	polynomial	time
• NP	is	a	superset	of	P
• NP	is	the	set	of	problems	that:

– Have	solutions	which	can	be	verified	in	polynomial	time	or,	
equivalently,

– can	be	solved	by	a	non-deterministic	Turing	machine	in	
polynomial	time	

• Roughly	speaking:
– Problems	in	P	are	tractable – can	be	solved	in	a	reasonable	
amount	of	time,	and	faster	computers	help

– Some	problems	in	NP	might not	be	tractable

Scaling



9/5/16

2

Isn’t	P	big?
• P	includes	O(n),	O(n2),	O(n10),	O(n100),	etc.
• Clearly	O(n10)	isn’t	something	to	be	excited	about	
– not	practical

• Computer	scientists	are	very	clever	at	making	
things	that	are	in	P	efficient

• First	algorithms	for	some	problems	are	often	
quite	expensive,	e.g.,	O(n3),	but	research	often	
brings	this	down

NP-hardness

• Many	problems	 in	AI	are	NP-hard	 (or	worse)
• What	does	this	mean?
• These	are	some	of	the	hardest	problems	 in	CS
• Identifying	 a	problem	as	NP	hard	means:
– You	probably	shouldn’t	waste	time	trying	to	find	a	
polynomial	time	solution

– If	you	find	a	polynomial	time	solution,	either
• You	have	a	bug
• Find	a	place	on	your	shelf	 for	your	Turing	 award

• NP	hardness	 is	a	major	 triumph	 (and	failure)	for	
computer	 science	 theory	

NP-hardness
• Why	it	is	a	failure:

– Huge	class	of	problems	with	no	known	efficient	solutions
– We	have	failed,	as	a	community,	find	efficient	solutions	or	prove	
that	none	exist

• Why	it	is	a	triumph:
– Developed	a	precise	language	for	talking	about	these	problems
– Developed	sophisticated	ways	to	reason	about	and	categorize	
the	problems	we	don’t	know	how	to	solve	efficiently

– Developing	an	arsenal	of	approximation	algorithms	for	hard	
problems

Understanding	the	class	NP

• A	class	of	decision	problems	 (Yes/No)
• Solutions	 can	be	verified	 in	polynomial	 time
• Examples:
– Graph	coloring:

– Sortedness:		[1	2	3	4	5	8	7]

WA
NT

Q

SA
NSW

VT



9/5/16

3

What	is	NP hardness?
• An	NP	hard	problem	is	at	least	has	hard	as	the	hardest	
problems	in	NP

• The	hardest	problems	in	NP	are	NP-complete
(no	known	poly	time	solution)

• Demonstrate	hardness	via	reduction
– Use	one	problem	to	solve	another
– A	is	reduced	 to	B,	if	we	can	use	B	to	solve	A:

A	instance
Poly-time
xformation

B	Solver

poly	time	A	solver	if	B	is	poly	time

Reductions

• If	B	is	NP-hard	and	A	is	of	unknown	 difficulty,	
what	does	 this	 tell	us?

• If	A	is	NP-hard,	and	B	is	of	unknown	 difficulty,	
what	does	 this	 tell	us?

A	instance
Poly-time
xformation

B	Solver

poly	time	A	solver	if	B	is	poly	time

Hardness	vs.	Completeness

• For	something	 to	be	NP-complete,	must	be	NP-
hard	and	 in	NP

• If	something	 is	NP-hard,	 it	could	be	even	harder	
than	 the	hardest	problems	 in	NP

• Proving	 completeness	 is	stronger	 theoretical	
result	– says	more	about	 the	problem

Examples	of	NP-Complete	Problems

• ≥	3	coloring
• ≥ 3SAT
• Clique
• Set	cover	&	vertex	cover
• Traveling	salesman
• Knapsack
• Subset	 sum
• Many,	 many,	more…



9/5/16

4

SAT-The	First	NP-Complete	Problem

• Given	a	set	of	binary	 variables
• Conjunction	 of	disjunctions	 of	these	variables

• Does	 there	exist	a	satisfying	assignment?	
(assignment	that	makes	the	expression	
evaluate	 to	true)

𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥"∨ 𝑥"' ∨ 𝑥( ∧ ⋯

Cook’s	Result	in	a	Cartoon

TM,	X,	poly	time
runtime	bound

Poly-time
xformation

SAT	 Instance

Assumptions:	TM	is	a	non-deterministic	Turing	machine	with
polynomial	run	time,	i.e.,	a	solver	for	problems	in	NP.

Poly	time	solver	for	SAT	would	solve	any	problem	in
NP	in	Poly	time

How	To	Prove	SAT	is	NP-Complete?
• Note:	Clearly	in	NP
• Challenge:	Nothing	from	which	to	reduce	because	this	
was	the	first	NP-complete	problem

• Idea	(Cook	1971):	
– Input:	

• Any	non-deterministic	Turing	machine	- TM
• Any	input	to	that	Turing	machine	- X
• A	polynomial	bound	on	the	run	time	of	the	machine

– Output:	A	polynomial	 size	SAT	expression	which	evaluates	
to	true	 IFF	TM	accepts	X

• Conclusion:	Solving	SAT	in	poly	time	implies	solving	any	
problem	in	NP	in	poly	time

Why	NP-completeness	is	SO	important

• All	NP-complete	problems:
– Are	in	NP
– Got	there	by	poly	time	transformation
– Can	solve	any	other	problem	in	NP	after	poly	time	
transformation

• Solving	any	one	NP-complete	problem	 in	poly	 time	
unlocks	 ALL	NP-complete	problems!

• Cracking	 just	one	means	P=NP!



9/5/16

5

P=NP?

• Biggest	open	 question	 in	CS
• Can	NP-complete	problems	 be	solved	 in	
polynomial	 time?

• Probably	 not,	but	nobody	 has	been	 able	to	
prove	 it	yet

• Recent	attempt	at	proof	detailed	 in	NY	Times,	
one	of	many	 false	starts:
http://www.nytimes.com/2009/10/08/science
/Wpolynom.html

How	challenging	is	“P=NP?”

• Princeton	University	CS	department
• See:		http://www.cs.princeton.edu/general/bricks.php
• Photo	from:		http://stuckinthebubble.blogspot.com/2009/07/three- interesting-points-on-princeton.html

Generalization
• Show	problem	A	is	NP-hard	because	known	NP-hard	
problem	B	is	a	special	case	of	A

• Example:	SAT	generalizes	3SAT
– Every	 valid	3SAT	 instance	 is	a	valid	SAT	 instance
– A	poly-time	 SAT	solver	would,	 therefore,	 ALSO	be	a	poly	
time	3SAT	 solver

– Conclusion:	SAT	 is	at	 least	as	hard	as	3SAT:	 NP-hard

• How	does	this	relate	to	reductions?

Reduction:	3SAT	->	Ind.	Set

• Independent	 set:	Given	G=(V,E),	does	 there	
exist	a	set	of	vertices	of	size	k	such	 that	no	
two	share	an	edge?

• Reduce	3SAT	to	 independent	 set:
– 3	nodes	for	each	clause	(corresponding	to	variable	
settings),	and	connect	them	in	a	3-clique

– Connect	all	nodes	with	complementary	settings	of	
the	same	variable

– Pick	k	=	#	of	clauses



9/5/16

6

k-clique	->	Subgraph Isomorphism
• k-clique:	Given	G=(V,E),	dthere exist	a	fully	
connected	component	of	size	k?

• Subgraph isomorphism:	Given	graphs	G	and	H,	
does	there	exist	a	subgraphof	G	that	is	
isomorphic	to	H

• (isomorphic	=	identical	up	to	node	relabelings)

• On	board

Optimization	vs.	Decision

• Optimization:	 Find	the	 largest	clique
• Decision:	 Does	 there	exist	a	clique	of	size	k

• NP	is	a	family	of	decision problems
• In	many	cases,	we	can	

reduce	 optimization	 to	decision

Weak	vs.	Strong	Hardness
• Some	problems	can	be	brute-forced	if	the	range	of	
numbers	involved	is	not	large	(note:	range	is	
exponential	in	input	size)

• Subset	sum:	∃ subset	of	a	group	of	natural	numbers	
that	sums	to	k?
– Use	dynamic	 programming
– Answer	 question	for	1…j
– Build	answer	 for	j+1	from	answers	 to	1…j
– Build	up	to	k

• Such	problems	are	weakly	NP-hard

What’s	harder	still?

• P-space	hardness	
• Algorithms	 in	P-space	 require	polynomial	 space

• Why	 is	this	at	least	as	hard	as	P-time?

• Still	harder:	 exp-time



9/5/16

7

How	To	Avoid	Embarrassing	Yourself
• Don’t	say:	“I	proved	that	it	requires	exponential	time.”	if	you	really	meant:

– “I	proved	it’s	NP-Hard/Complete”
– “The	best	solution	I	could	come	up	with	takes	exponential	time.”

• Don’t	say:		“The	problem	is	NP”	(which	doesn’t	even	make	sense)	 if	you	
really	meant:

• “Problem	is	in	NP”	(often	a	weak	statement)
• “The	problem	NP-Hard/Complete”	(usually	a	strong	statement)

• Don’t	reduce	new	problems	to	NP-hard	complete	problems	if	you	meant	
to	prove	the	new	problem	is	hard

• Such	a	reduction	is	backwards.		What	you	really	proved	is	that	you	can	use	
a	hard	problem	to	solve	an	easy	one.		Always	think	carefully	about	the	
direction	of	your	reductions

NP-Completeness	Summary

• NP-completeness	tells	us	that	a	problem	belongs	to	
class	of	similar,	hard	problems.

• What	if	you	find	that	a	problem	is	NP	hard?
– Look	for	good	approximations	 with	 provable	guarantees
– Find	different	 measures	of	complexity
– Look	for	tractable	 subclasses
– Use	heuristics	 – try	to	do	well	on	“most”	 cases


