NP Hardness/Completeness

Overview
Ron Parr
CompSci 570

P and $N P$

- P and NP are about decision problems
- P is set of problems that can be solved in polynomial time
- $N P$ is a superset of P
- $N P$ is the set of problems that:
- Have solutions which can be verified in polynomial time or, equivalently,
- can be solved by a non-deterministic Turing machine in polynomial time
- Roughly speaking:
- Problems in P are tractable - can be solved in a reasonable amount of time, and faster computers help
- Some problems in NP might not be tractable

Why Study NP-hardness

- NP hardness is not an Al topic
- It's important for all computer scientists
- Understanding it will deepen your understanding of AI (and other CS) topics
- You will be expected to understand its relevance and use for Al problems
- Eat your vegetables; they're good for you

Isn't P big?

- P includes $O(n), O\left(n^{2}\right), O\left(n^{10}\right), O\left(n^{100}\right)$, etc.
- Clearly $\mathrm{O}\left(\mathrm{n}^{10}\right)$ is n^{\prime} t something to be excited about -not practical
- Computer scientists are very clever at making things that are in P efficient
- First algorithmsfor some problems are often quite expensive, e.g., $\mathrm{O}\left(\mathrm{n}^{3}\right)$, but research often brings this down

NP-hardness

- Why it is a failure:
- Huge class of problems with no known efficient solutions
- We have failed, as a community, find efficient solutions or prove that none exist
- Why it is a triumph:
- Developed a precise language for talking about these problems
- Developed sophisticated ways to reason about and categorize the problems we don't know how to solve efficiently
- Developing an arsenal of approximation algorithms for hard problems

NP-hardness

- Many problems in AI are NP-hard (or worse)
- What does this mean?
- These are some of the hardest problems in CS
- Identifying a problem as NP hard means:
- You probably shouldn't waste time trying to find a polynomial time solution
- If you find a polynomial time solution, either
- You have a bug
- Find a place on your shelf for your Turing award
- NP hardness is a major triumph (and failure) for computer science theory

Understanding the class NP

- A class of decision problems (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
- Graph coloring:

- Sortedness: [1 23458 7]

What is NP hardness?

- An NP hard problem is at least has hard as the hardest problems in NP
- The hardest problems in NP are NP-complete (no known poly time solution)
- Demonstrate hardness via reduction
- Use one problem to solve another
- A is reduced to B, if we can use B to solve A:

Hardness vs. Completeness

- For something to be NP-complete, must be NPhard and in NP
- If something is NP-hard, it could be even harder than the hardest problems in NP
- Proving completeness is stronger theoretical result - says more about the problem

poly time A solver if B is poly time
- If B is NP-hard and A is of unknown difficulty, what does this tell us?
- If A is NP-hard, and B is of unknown difficulty, what does this tell us?

Examples of NP-Complete Problems

- ≥ 3 coloring
- \geq 3SAT
- Clique
- Set cover \& vertex cover
- Traveling salesman
- Knapsack
- Subset sum
- Many, many, more...

SAT-The First NP-Complete Problem

- Given a set of binary variables
- Conjunction of disjunctions of these variables

$$
\left(x_{1} \vee \overline{x_{3}} \vee x_{7}\right) \wedge\left(\overline{x_{1}} \vee x_{12} \vee x_{9}\right) \wedge \cdots
$$

- Does there exist a satisfying assignment? (assignment that makes the expression evaluate to true)

Cook's Result in a Cartoon

Why NP-completeness is SO important

- All NP-complete problems:
- Are in NP
- Got there by poly time transformation
- Can solve any other problem in NP after poly time transformation
- Solving any one NP-complete problem in poly time unlocks ALL NP-complete problems!
- Cracking just one means $\mathrm{P}=\mathrm{NP}$!

$\mathrm{P}=\mathrm{NP}$?

- Biggest open question in CS
- Can NP-complete problems be solved in polynomial time?
- Probably not, but nobody has been able to prove it yet
- Recent attempt at proof detailed in NY Times, one of many false starts:
http://www.nytimes.com/2009/10/08/science /Wpolynom.html

How challenging is " $\mathrm{P}=\mathrm{NP}$?"

- Princeton University CS department
- See: http://www.cs.princeton.edu/general/bricks.php

Photo from: htp:///stuckinthebubble.blogspot.com/2009/07/three interesting-points-on-princeton.html

Generalization

- Show problem A is NP-hard because known NP-hard problem B is a special case of A
- Example: SAT generalizes 3SAT
- Every valid 3SAT instance is a valid SAT instance
- A poly-time SAT solver would, therefore, ALSO be a poly time 3SAT solver
- Conclusion: SAT is at least as hard as 3SAT: NP-hard
- How does this relate to reductions?

Reduction: 3SAT -> Ind. Set

- Independent set: Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, does there exist a set of vertices of size k such that no two share an edge?
- Reduce 3SAT to independent set:
- 3 nodes for each clause (corresponding to variable settings), and connect them in a 3-clique
- Connect all nodes with complementary settings of the same variable
- Pick k = \# of clauses

k-clique -> Subgraph Isomorphism

- k-clique: Given $G=(\mathrm{V}, \mathrm{E})$, dthere exist a fully connected component of size k ?
- Subgraph isomorphism: Given graphs G and H, does there exist a subgraph of G that is isomorphic to H
- (isomorphic = identical up to node relabelings)
- On board

Weak vs. Strong Hardness

- Some problems can be brute-forced if the range of numbers involved is not large (note: range is exponential in inputsize)
- Subset sum: \exists subset of a group of natural numbers that sums to k?
- Usedynamic programming
- Answer question for 1...j
- Build answer for $\mathrm{j}+1$ from answers to $1 . . . \mathrm{j}$
- Build up to k
- Such problems are weakly NP-hard

Optimization vs. Decision

- Optimization: Find the largest clique
- Decision: Does there exist a clique of size k
- NP is a family of decision problems
- In many cases, we can
reduce optimization to decision

P-space hardness

- Algorithms in P-space require polynomial space
- Why is this at least as hard as P-time?
- Still harder: exp-time

How To Avoid Embarrassing Yourself

- Don't say: "I proved that it requires exponential time." if you really meant: - "I proved it's NP-Hard/Complete"
- "The best solution I could come up with takes exponential time."
- Don't say: "The problem is NP" (which doesn't even make sense) if you really meant:
- "Problem is in NP" (often a weak statement)
- "The problem NP-Hard/Complete" (usually a strong statement)
- Don't reduce new problems to NP-hard complete problems if you meant to prove the new problem is hard
- Such a reduction is backwards. What you really proved is that you can use a hard problem to solve an easy one. Always think carefully about the direction of your reductions

NP-Completeness Summary

- NP-completeness tells us that a problem belongs to class of similar, hard problems.
- What if you find that a problem is NP hard?
- Look for good approximations with provable guarantees
- Find different measures of complexity
- Look for tractable subclasses
- Use heuristics - try to do well on "most" cases

