
1

Planning

CPS	570
Ron	Parr

Some	Actual	Planning	 Applications

• Used	to	fulfill	mission	objectives	in	Nasa’s	Deep	Space	
One	(Remote	Agent)
– Particularly	 important	 for	space	operations	due	 to	latency

• Also	used	 for	Rovers
– Finally(!)	used	onboard	on	curiosity:

http://www.jpl.nasa.gov/news/news.php?relea se=201 3-259&r n=news.xml&rst =3884

• Aircraft	assembly	schedules
• Logistics	for	the	U.S.	Navy
• Observation	schedules	for	Hubble	space	telescope
• Scheduling	of	operations	in	an	Australian	beer	factory

Scheduling

• Many	“planning”	problems	are	scheduling	problems

• Scheduling	can	be	viewed	as	a	generalization	of	the	
planning	problem	to	include	resource	constraints
– Time	 &	Space
– Money	&	Energy

• Many	principles	from	regular	planning	generalize,	
but	some	extensions	(not	discussed	here)	are	used

Characterizing	Planning	Problems

• Start	state	(group	of	states)
• Goal	– almost	always	a	group	of	states
• Actions

• Objective:		Plan	=	A	sequence	of	actions	that	is	
guaranteed to	achieve	the	goal.

• Like	everything	else,	can	view	planning	as	search…
• So,	how	is	this	different	from	generic	search?



2

What	makes	planning	special?

• States	 typically	 specified	by	a	 set	of	relations	or	propositions:
– On(solar_panels,	cargo_floor)
– arm_broken

• Goal	is	almost	always	 a	set
– Typically	care	about	a	small	number	of	things:

• at(Ron,	airport),	
• parked_in(X,	car_of(Ron))
• airport_parking_stall(X)

– Many	things	are	irrelevant
• parked_in(Y,	 car_of(Bill))
• adjacent(X,Y)

• Branching	 factor	 is	large

Planning	Algorithms

• Extremely	active	and	rapidly	changing	area
• Regular	competitions	pit	different	algorithms	against	
each	other	on	suites	of	challenge	problems

• Algorithms	compete	in	different	categories
– General	 vs.	Domain	specific
– Optimal	vs.	Satisficing

• No	clearly	 superior	 method	 has	emerged

PDDL	– A	Language	for	Planning	
Problems

• Actions	have	a	set	of	preconditions	and	effects
• Think	of	the	world	as	a	database

– Preconditions	specify	what	must	be	 true	 in	the	database	 for	
the	action	to	be	applied

– Effects	 specify	which	 things	will	be	changed	 in	the	database	 if	
the	action	is	taken

• NB:		PDDL	supersedes	an	earlier,	similar	representation	
called	STRIPS

move(obj,from,to)
• Preconditions

– clear(obj)
– on(obj,from)
– clear(to)

• Effects
– Add

• on(obj,to)
• clear(from)

– Delete
• on(obj,from)
• clear(to)

x

y

z

move(y,x,z)



3

Limitations	of	PDDL

• Assumes	that	a	small	number	 of	things	
change	with	each	action
– Dominoes	L
– Pulling	out	the	bottom	block	from	a	stack	L

• Preconditions	 and	effects	are	conjunctions
• No	quantification
• Closed	 world	assumption	 (negation	 in	
implemented	 as	deletion,	no	negated	
preconditions)	

How	hard	is	planning?

• Planning	 is	NP	hard
• How	can	we	prove	 this?

– Use	Planning	to	solve	3SAT
– Any	3SAT	instance	can	be	converted	to	a	
planning	problem	in	polynomial	time

– Polynomial	time	planning	algorithm	would	
imply	polynomial	time	solution	to	3SAT

Planning	Reduction

• Introduce	a	predicate	for	whether	a	clause	is	
satisfied	or	unsatisfied

• Goal:	satisfied_c1 AND	satisfied_c2…AND	
satisfied_cm

• Initial	state:	unsatisfied_c1 AND	
unsatisfied_c2…AND	unsatisfied_cm,	
unassigned(x1)	AND	unassigned(x2)	AND	
…unassigned(xn)

set(xi,value)

• Preconditions:
– unassigned(xi)

• Effects
– Add

• assigned(xi)
• set(xi,value)

– Delete
• unassigned(xi)



4

Satisfy_ci

• Preconditions
– Unsatisfied_ci
– Set(xj,vi(xj))	OR	set(xk,vi(xk))	OR	set(xl,vi(xl))

• Effects
– Add

• Satisfied_ci
– Delete

• {} vi(xj)	=	truth	 value
needed	 by	variable	 j	in	clause	 i

How	expensive	is	this	reduction?

• How	many	predicates/propositions	 are	
introduced?

• How	many	actions	are	introduced?

• What	does	 the	plan	do?
• What	prevents	 the	planner	 from	making	
inconsistent	 assignments?

Is	planning	NP-complete?

• NO!
• Consider	 the	 towers	of	Hanoi:

– http://www.mazeworks.com/hanoi/index.htm

– PDDL	actions	are	the	block	moving	actions
• Requires	exponential	 number	 of	moves
• Planning	 is	actually	PSPACE	 complete
• Planning	 with	bounded	 plans	 is	NP-complete

Should	plan	size	worry	us?
• What	 if	you	 have	a	problem	 with	an	exponential	
length	solution?

• Impractical	 to	execute	 (or	even	write	down)	 the	
solution,	 so	maybe	we	shouldn’t	 worry

• Sometimes	this	may	just	be	an	artifact	of	our	
action	 representation
– Towers	of	Hanoi	solution	can	be	expressed	as	a	
simple	recursive	program

– Nice	if	planner	could	find	such	programs



5

Planning	Using	Search

• Forward	Search:
– Blind	forward	 search	 is	problematic	 because	of	the	
huge	branching	 factor

– Some	success	using	this	method	with	carefully	chosen	
action	pruning	heuristics	 (not	covered	 in	class)

• Backward	Search:
– Tends	 to	focus	search	on	relevant	 terms
– Called	“Goal	Regression”	 in	the	planning	context

Goal	Regression
• Goal	regression	is	a	form	of	backward	search	from	goals
• Basic	principle	goes	back	to	Aristotle
• Embodied	in	earliest	AI	systems

– GPS:	General	 Problem	Solver	by	Newell	 &	Simon

• Cognitively	plausible
• Idea:

– Pick	actions	that	achieve	 (some	of)	your	goal
– Make	preconditions	of	these	actions	your	new	 goal
– Repeat	 until	the	goal	 set	 is	satisfied	by	start	 state

Goal	Regression	Example

x

y

z

Goal:		on(x,z)

Regress	on(x,z)
through	 move(z,table,x)

New	goal:
clear(x)

Greed,	decomposition	in	planning

• Does	a	greedy	approach	work	for	planning?

• Idea:
– Pick	actions	that	 satisfy	as	many	parts	of	the	goal	as	possible
– If	no	single	action	satisfies	any	part	of	the	goal,	 break	up	the	
goal	 into	pieces	and	plan	to	solve	each	of	them	 individually

• Bad	news:		This	works	poorly	in	general



6

The	Sussman	Anomaly

z

yx z

y

x

Goal:		on(x,y),	 on(y,z)

Problems	with	naïve	subgoaling

• The	number	 of	conjuncts	 satisfied	may	not	be	a	
good	heuristic

• Achieving	 individual	 conjuncts	 in	isolation	may	
actually	make	 things	harder

• Causes	simple	planners	 to	go	 into	 loops	and/or	
take	 lots	of	wasted	steps

z

yx z

y

x

Summary	of	Traditional	Planners

• Backward	search	methods	are	were	more	
focused,	with	careful	construction	these	could	be	
sound	and	complete	generic	planners

• Forward	search	methods	worked	well	when:
– Search	 space	was	very	 narrow	 (only	a	 small	number	of	
reasonable	 things	to	do,	which	prevented	 exponential	
growth	 in	reachable	 search	space)

– Domain-specific	knowledge	 could	be	used	to	narrow	
the	search	space	

Modern	Planners

• One	family	uses	sophisticated	heuristics	(graphplan)
– Uses	various	 tricks	to	narrow	 search	space
– May	use	forward	 or	backward	 planning

• Another	family	uses	forward	chaining	with	domain	
specific	tricks	to	prune	the	search	space

• Snother family	converts	everything	into	a	giant	SAT	
problem	and	runs	a	highly	optimized	SAT	solver	
(SATPlan)



7

What’s	Missing?

• As	described,	 plans	are	“open	 loop”
• No	provisions	 for:

– Actions	failing
– Uncertainty	about	initial	state
– Observations

• Solutions:
– Plan	monitoring,	replanning
– Conformant/Sensorless	planning
– Contingency	planning	

Planning	Under	Uncertainty

• What	 if	there	 is	a	probability	distribution	over	possible	
outcomes?
– Called:		Planning	under	uncertainty,	decision	theoretic	planning,	

Markov	Decision	Processes	(MDPs)
– Much	more	robust:		Solution	is	a	“universal	plan”,	i.e.,	a	plan	for	all	

possible	outcomes	(monitoring	and	replanning	are	implicit)
– Much	more	difficult	computationally

• What	 if	observations	are	unreliable?
– Called:	“Partial	Observability”,	Partially	Observable	MDPs	(POMDPs)
– Applications	to	medical	diagnosis,	defense,	sensor	planning
– Way,	way	harder	computationally


