
1

Review	of	Probability

CPS	570
Ron	Parr

Why	does	AI	need	uncertainty?
• Reason:	 	Sh*t	happens
• Actions	don’t	have	 deterministic	 outcomes

• Can	logic	be	 the	“language”	 of	AI???
• Problem:

General	 logical	 statements	 are	 almost	always	 false

• Truthful	and	accurate	 statements	 about	the	world	would	seem	to	
require	 an	endless	 list	of	qualifications

• How	do	you	start	a	car?
• Call	 this	“The	Qualification	Problem”

The	Qualification	Problem

• Is	this	a	real	concern?
• YES!
• Systems	that	 try	 to	avoid	 dealing	with	
uncertainty	 tend	 to	be	brittle.

• Plans	 fail
• Finding	shortest	path	 to	goal	isn’t	 that	great	 if	
the	path	doesn’t	 really	get	you	 to	 the	goal

Probabilities
• Natural	way	to	represent	uncertainty

• People	have	intuitive	notions	about	probabilities

• Many	of	these	are	wrong or	inconsistent

• Most	people	don’t	getwhat	probabilities	mean

• Finer	details	of	this	question	still	debated
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Bogus	Probabilistic	Reasoning

• Is	the	sequence	123456	any	less	likely	than	any	
other	sequence	of	lottery	numbers?

• Is	it	good	to	bet	on	rare	events	because	they	are	
“due”	to	come	up?

• Cancer	clusters

Relative	Frequencies
• Probabilities	defined	 over	events
• Space	of	all	possible	events	 is	the	“event	 space”

• Think:	 	Playing	 blindfolded	darts	with	the	Venn	diagram…
• P(A)	≅ percentage	 of	dart	throws	 that	hit	A	(assuming	a	

uniform	distribution	of	dart	hits	over	 the	area	 of	the	box)

A
Event	 space:

Not	A

Understanding	Probabilities

• Initially,	probabilities	are	“relative	frequencies”
• This	works	well	for	dice	and	coin	flips
• For	more	complicated	events,	this	is	problematic
• Probability	Trump	winning	election	in	2017?

– This	event	 only	happens	once
– We	can’t	 count	frequencies
– Still	 seems	 like	a	meaningful	 question

• In	general,	all	events	are	unique
• “Reference	Class”	problem

Probabilities	and	Beliefs

• Suppose	I	have	flipped	a	coin	and	hidden	the	outcome
• What	is	P(Heads)?

• Note	that	this	is	a	statement	about	a	belief,	not	a	
statement	about	the	world

• The	world	is	in	exactly	one	state	(at	the	macro	level)	and	it	
is	in	that	state	with	probability	1.

• Assigning	truth	values	to	probability	statements	is	very	
tricky	business

• Must	reference	 speakers	state	of	knowledge
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Frequentism	and	Subjectivism

• Frequentists:	Probabilities	=	relative	frequencies
– Purist	viewpoint	
– But,	 relative	 frequencies	 often	unobtainable
– Often	 requires	complicated	 and	convoluted	assumptions	to	
come	up	with	probabilities

• Subjectivists:	Probabilities	=	degrees	of	belief	
– Taints	purity	of	probabilities
– Often	more	practical

The	Middle	Ground

• No	two	events	are	 ever	 identical,	but
• No	two	events	are	 ever	 totally	unique	either
• Probability	 that	Trump	will	win	 the	election	 in	2017?

– We	now	how	states	have	leaned	in	the	past
– Performance	in	debates	informs	our	expectations

• In	reality,	 we	use	probabilities	as	beliefs,	 but	we	allow	data	
(relative	 frequencies)	 to	influence	 these	 beliefs

• More	precisely:	 	We	can	use	Bayes	 rule	 to	combine	our	prior	
beliefs	with	new	data

Why	probabilities	are	good
• Subjectivists:	probabilities	are	degrees	of	belief
• Are	all	degrees	of	belief	probability?

– AI	has	used	many	notions	of	belief:	
• Certainty	Factors
• Fuzzy	Logic

• Can	prove	that	a	person	who	holds	a	system	of	beliefs	
inconsistent	with	probability	theory	can	be	tricked	into	
accepted	a	sequence	of	bets	that	is	guaranteed	to	lose	
(Dutch	book)	in	expecation

What	are	probabilities	 mathematically?

• Probabilities	are	defined	over	random	variables
• Random	variables	represented	with	capitals:		X,Y,Z

• RVs	take	on	values	from	a	finite	domain:	d(X),	d(Y),	d(Z)

• We	use	lower	case	letters	for	values	from	domains
– X=x	asserts:	RV	X	has	taken	 on	value	x
– P(x)	is	shorthand	for	P(X=x)
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Event	 spaces	 for	binary,	discrete	 RVs

• 2	variable	case

• Important:		Event	space	grows	exponentially	in	
number	of	random	variables

• Components	of	event	space	=	atomic	events

ab

ba
ba

ab

Domains

• In	 the	simplest	case,	domains	are	Boolean

• In	general	may	 include	many	different	 values

• Most	general	 case:	domains	may	be	continuous

• Continuous	 domains	 introduce	 complications

Kolmogorov’s	 axioms	 of	probability

• 0≤P(a)	≤	1
• P(true)	=	1;	P(false)=0
• P(a	or	b)	=	P(a)	+	P(b)	– P(a	and	b)
• Subtract	 to	correct	 for	double	 counting

• Sufficient	 to	completely	 specify	probability	
theory for	discrete	variables

• Continuous	 variables	need	density	 functions

Atomic	Events

• When	several	variables	are	involved,	 it	is	useful	
to	 think	about	 atomic	events

• Complete	 assignment	 to	variables	 in	 the	domain	
– Atomic	events	are	mutually	exclusive
– Exhaust	space	of	all	possible	events
– Atomic	events	=	states

• For	n	binary	 variables,	how	many	unique	 atomic	
events	are	 there?
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Joint	Distributions

• A	joint	distribution	is	an	assignment	of	
probabilities	to	every	possible	atomic	event

• We	can	define	all	other	probabilities	in	terms	of	
the	joint	probabilities	by	marginalization:

!!

€ 

P(a) = P(ei)
e i∈e(a )
∑

!!

€ 

P(a) = P(a∧b) + P(a∧¬b)

Example

• P(cold	⋀ headache)	 =	0.4
• P(¬cold	⋀ headache)	 =	0.2
• P(cold	⋀ ¬ headache)	 =	0.3
• P(¬ cold	⋀ ¬ headache)	 =	0.1

• What	are	P(cold)	and	P(headache)?

Independence

• If	A	and	B	are	independent:
P(A	⋀ B)	=	P(A)P(B)

• P(cold	⋀ headache)	=	0.4
• P(¬cold	⋀ headache)	=	0.2
• P(cold	⋀ ¬ headache)	=	0.3
• P(¬ cold	⋀ ¬ headache)	=	0.1

• Are	cold	and	headache	independent?

Independence

• If	A	and	B	are	mutually	exclusive:
P(A	∨ B)	=	P(A)+P(B)	(Why?)

• Examples	of	independent	events:
– Duke	winning	NCAA,	Dem.	winning	white	 house
– Two	successive,	 fair	 coin	flips
– My	car	 starting	and	my	iPhone	working
– etc.

• Can	independent	events	be	mutually	exclusive?
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Why	Probabilities	Are	Messy
• Probabilities	are	not	truth-functional
• Computing	P(a	and	b)	requires	the	joint	distribution

– sum	out	all	of	the	other	variables	 from	the	distribution
– It	 is	not	a	function	of	P(a)	and	P(b)
– It	 is	not	a	function	of	P(a)	and	P(b)
– It	 is	not	a	function	of	P(a)	and	P(b)

• This	fact	led	to	many	approximations	methods	such	as	
certainty	factors	and	fuzzy	logic	(Why?)

• Neat	vs.	Scruffy…

The	Scruffy	Trap
• Reasoning	about	probabilities	correctly	requires	
knowledge	of	the	joint	distribution
– Exponentially	 large!
– Very	 convenient!

• Assuming	independence	(mutual	exclusivity)	
when	there	is	not	independence	(mutual	
exclusivity)	leads	to	incorrect	answers

• Examples:
– ANDing	symptoms	by	multiplying	 (independence)
– ORing	symptoms	by	adding	 (mutual	exclusivity)

Conditional	Probabilities

• Ordinary	probabilities	 for	random	variables:
unconditional or	prior probabilities

• P(a|b)	=	P(a	AND	b)/P(b)

• This	tells	us	the	probability	of	a	given	 that	we	know	only b

• If	we	 know	c	and	d,	we	 can’t	use	P(a|b)	directly	
(without	additional	assumptions)

• Annoying,	but	solves	 the	qualification	problem…

Probability	 Solves	 the	Qualification	 Problem

• P(disease|symptom1)

• Defines	 the	probability	 of	a	disease	given	 that	
we	have	observed	 only symptom1

• The	conditioning	 bar	indicates	 that	the	
probability	 is	defined	 with	respect	 to	a	
particular	 state	of	knowledge,	 not	as	an	
absolute	 thing
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Condition	with	Bayes’s	Rule

!!

€ 

P(A∧B) = P(B∧ A)
P(A |B)P(B) = P(B | A)P(A)

P(A |B) =
P(B | A)P(A)

P(B)

Note	 that	we	 will	usually	call	Bayes’s	 rules	“Bayes	Rule”

Conditioning	 and	Belief	 Update

• Suppose	 we	know	P(ABCDE)
• Observe	 B=b,	update	 our	beliefs:

!!

€ 

P(ACDE |b) =
P(ABCDE)

P(b)
=

P(ABCDE)
P(AbCDE)

ACDE
∑

Joint

Notation	comment:	 	This	 is	a	very	condensed	notation.
P(ACDE|b)	is	not	a	number;	 it’s	a	distribution

Example	Revisited

• P(cold	⋀ headache)	 =	0.4
• P(¬cold	⋀ headache)	 =	0.2
• P(cold	⋀ ¬ headache)	 =	0.3
• P(¬ cold	⋀ ¬ headache)	 =	0.1

• What	 is	P(cold|headache)?

Let’s	Play	Doctor

• Suppose	P(cold)	=	0.7,	P(headache)	=	0.6
• P(headache|cold)	=	0.57	
• What	is	P(cold|headache)	using	Bayes	Rule:?

• IMPORTANT:		Not	always	symmetric

!!!!

€ 

P(c |h) =
P(h | c)P(c)

P(h)

=
0.57*0.7

0.6
= 0.66
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Another	Example
• From:	http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/

(attributed	 to	Gerd	Gigerenzer)

• “The	probability	that	one	of	these	women	has	breast	cancer	is	0.8	
percent. If	a	woman	has	breast	cancer,	the	probability	is	90	percent	
that	she	will	have	a	positive	mammogram. If	a	woman	does	not have	
breast	cancer,	the	probability	is	7	percent	that	she	will	still	have	a	
positive	mammogram. Imagine	a	woman	who	has	a	positive	
mammogram. What	is	the	probability	that	she	actually	has	breast	
cancer?”

• 95/100	U.S.	doctors	answered	~75%

Expectation

• Most	of	us	use	expectation	 in	some	form	
when	we	compute	 averages

• What	 is	the	average	value	of	a	die	roll?

• (1+2+3+4+5+6)/6	 =	3.5

Bias

• What	if	not	all	events	are	equally	likely?
• Suppose	weighted	die	makes	6	2X	more	likely	
that	anything	else.		What	is	average	value	of	
outcome?

• (1	+	2	+	3	+	4	+	5	+	6	+	6)/7	=	3.86

• Probs:		1/7	for	1…5,	and	2/7	for	6

• (1	+	2	+	3	+	4	+	5)*1/7	+	6	*	2/7	=	3.86

Expectation	in	General

• Suppose	 we	have	some	RV	X
• Suppose	 we	have	some	function	 f(X)
• What	 is	the	expected	 value	of	f(X)?

!!

€ 

E
x
f (x) = P(X ) f (X )

x
∑
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Sums	of	Expectations
• Suppose	we	have	f(X)	 and	g(Y).
• What	is	the	expected	value	of	f(X)+g(Y)?

E
XY
f (X )+g (Y )= P (X ∧Y )( f (X )

XY
∑ +g (Y ))

= P (X ∧Y ) f (X )
XY
∑ + P (X ∧Y )

XY
∑ g (Y )

= P (X ∧Y ) f (X )+
Y
∑

X
∑ P (X ∧Y )g (Y )

X
∑

Y
∑

= f (x ) P (X ∧Y )+
Y
∑

X
∑ g (Y ) P (X ∧Y )

X
∑

Y
∑

= f (x )P (X )
X
∑ + g (Y ) P (X ∧Y )

X
∑

Y
∑

=E
X
f (X )+E

Y
g (Y )

Continuous	 Random	Variables

• Domain	 is	some	interval,	 region,	or	union	of	regions
• Uniform	case:	 	Simplest	 to	visualize	

(event	probability	 is	proportional	 to	area)
• Non-uniform	case	visualized	with	extra	 dimension
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- 10 - 5 0 5 10

( 1/ ( 2*pi) ) 	 *	exp( - ( x**2) /2)

Gaussian
(normal/bell)
distribution:

Requirements	on	Continuous	 Distributions

• p(x)>1	 is possible	 so	long	as:

• Don’t	 confuse	 p(x)	and	P(X=x)
• P(X=x)	 for	any	x	 is	0!

∫ =
x

dxxp 1)(

∫=∈
A

dxxpAxP )()(

Cumulative	Distributions

• When	distribution	is	over	numbers,	we	can	ask:
– P(X>=c)	 for	some	c
– P(X<c)	for	some	c
– P(a<=X<=b)	 for	 some,	a	and	b

• Solve	by
– Summation
– Integration

• Cumulative	sometimes	called
– CDF
– Distribution	function
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Sloppy	Comment	 about
Continuous	Distributions

• In	many,	many	cases,	you	can	generalize	what	you	
know	about	discrete	distributions	to	continuous	
distributions,	replacing	“P”	with	“p”	and	“Σ”with	“∫”

• Proper	treatment	of	this	topic	requires	measure	
theory	and	is	beyond	the	scope	of	the	class

Probability	Conclusions
• Probabilistic	 reasoning	has	many	advantages:

– Solves	qualification	problem
– Is	better	than	any	other	system	of	beliefs	(Dutch	book	argument)

• Probabilistic	 reasoning	 is	tricky
– Some	things	decompose	nicely:		linearity	of	expectation,	

conjunctions	of	independent	events,	disjunctions	of	disjoint	events
– Some	things	can	be	counterintuitive	at	first:		conjunctions	of	

arbitrary	events,	conditional	probability

• Reasoning	efficiently	 with	probabilities	poses	significant	data	
structure	and	algorithmic	 challenges	 for	AI	

(Roughly	 speaking,	 the	AI	community	 realized	 some	time	around	 1990	 that	
probabilities	 were	 the	 right	 thing	 and	has	 spent	 the	 last	20	years	grappling	 with	 this	
realization.)


