Review of Probability

CPS 570
Ron Parr

The Qualification Problem

- Is this a real concern?
- YES!
- Systems that try to avoid dealing with uncertainty tend to be brittle.
- Plans fail
- Finding shortest path to goal isn't that great if the path doesn't really get you to the goal

Why does AI need uncertainty?

- Reason: Sh*t happens
- Actions don't have deterministic outcomes
- Can logic be the "language" of AI???
- Problem:

General logical statements are almost always false

- Truthful and accurate statements about the world would seem to require an endless list of qualifications
- How do you start a car?
- Call this "The Qualification Problem"

Probabilities

- Natural way to represent uncertainty
- People have intuitive notions about probabilities
- Many of these are wrong or inconsistent
- Most people don't get what probabilities mean
- Finer details of this question still debated

Bogus Probabilistic Reasoning

- Is the sequence 123456 any less likely than any other sequence of lottery numbers?
- Is it good to bet on rare events because they are "due" to come up?
- Cancer clusters

Understanding Probabilities

- Initially, probabilities are "relative frequencies"
- This works well for dice and coin flips
- For more complicated events, this is problematic
- Probability Trump winning election in 2017?
- This event only happens once
- We can't count frequencies
- Still seems like a meaningful question
- In general, all events are unique
- "Reference Class" problem

Relative Frequencies

- Probabilities defined over events
- Space of all possible events is the "event space"

Event space

- Think: Playing blindfolded darts with the Venn diagram...
- $P(A) \cong$ percentage of dart throws that hit A (assuming a uniform distribution of dart hits over the area of the box)

Probabilities and Beliefs

- Suppose I have flipped a coin and hidden the outcome
- What is P (Heads)?
- Note that this is a statement about a belief, not a statement about the world
- The world is in exactly one state (at the macro level) and it is in that state with probability 1.
- Assigning truth values to probability statements is very tricky business
- Must reference speakers state of knowledge

Frequentism and Subjectivism

- Frequentists: Probabilities = relative frequencies
- Purist viewpoint
- But, relative frequencies often unobtainable
- Often requires complicated and convoluted assumptions to come up with probabilities
- Subjectivists: Probabilities = degrees of belief
- Taints purity of probabilities
- Often more practical

Why probabilities are good

- Subjectivists: probabilities are degrees of belief
- Are all degrees of belief probability?
- At has used many notions of belief:
- Certainty Factors
- Fuzzy Logic
- Can prove that a person who holds a system of beliefs inconsistent with probability theory can be tricked into accepted a sequence of bets that is guaranteed to lose (Dutch book) in expecation

The Middle Ground

- No two events are ever identical, but
- No two events are ever totally unique either
- Probability that Trump will win the election in 2017?
- We now how states have leaned in the past
- Performance in debates informs our expectations
- In reality, we use probabilities as beliefs, but we allow data (relative frequencies) to influence these beliefs
- More precisely: We can use Bayes rule to combine our prior beliefs with new data

What are probabilities mathematically?

- Probabilities are defined over random variables
- Random variables represented with capitals: X, Y, Z
- RVs take on values from a finite domain: $d(X), d(Y), d(Z)$
- We use lower case letters for values from domains
- X=x asserts: RV X has taken on value x
- $P(x)$ is shorthand for $P(X=x)$

Event spaces for binary, discrete RVs

- 2 variable case

- Important: Event space grows exponentially in number of random variables
- Components of event space = atomic events

Kolmogorov's axioms of probability

- $0 \leq P(a) \leq 1$
- $P($ true $)=1 ; P(f a l s e)=0$
- $P(a$ or $b)=P(a)+P(b)-P(a$ and $b)$
- Subtract to correct for double counting
- Sufficient to completely specify probability theory for discrete variables
- Continuous variables need density functions

Domains

- In the simplest case, domains are Boolean

In general may include many different values

- Most general case: domains may be continuous
- Continuous domains introduce complications

Atomic Events

- When several variables are involved, it is useful to think about atomic events
- Complete assignment to variables in the domain
- Atomic events are mutually exclusive
- Exhaust space of all possible events
- Atomic events = states
- For n binary variables, how many unique atomic events are there?

Joint Distributions

- A joint distribution is an assignment of probabilities to every possible atomic event
- We can define all other probabilities in terms of the joint probabilities by marginalization:

$$
\begin{gathered}
P(a)=P(a \wedge b)+P(a \wedge \neg b) \\
P(a)=\sum_{e_{i} \in e(a)} P\left(e_{i}\right)
\end{gathered}
$$

Independence

- If A and B are independent:

$$
P(A \wedge B)=P(A) P(B)
$$

- $\mathrm{P}($ cold \wedge headache $)=0.4$
- $\mathrm{P}(\neg$ cold \wedge headache $)=0.2$
- $\mathrm{P}($ cold $\wedge \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\wedge \neg$ headache $)=0.1$
- Are cold and headache independent?

Example

- P (cold \wedge headache) $=0.4$
- $\mathrm{P}(\neg$ cold \wedge headache) $=0.2$
- $\mathrm{P}($ cold $\wedge \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\wedge \neg$ headache $)=0.1$
- What are $\mathrm{P}($ cold $)$ and P (headache)?

Independence

- If A and B are mutually exclusive:

$$
P(A \vee B)=P(A)+P(B)(W h y ?)
$$

- Examples of independent events:
- Duke winning NCAA, Dem. winning white house
- Two successive, fair coin flips
- My car starting and my iPhone working
- etc.
- Can independent events be mutually exclusive?

Why Probabilities Are Messy

- Probabilities are not truth-functional
- Computing $\mathrm{P}(\mathrm{a}$ and b) requires the joint distribution
- sum out all of the other variables from the distribution
- It is not a function of $P(a)$ and $P(b)$
- It is not a function of $P(a)$ and $P(b)$
- It is not a function of $P(a)$ and $P(b)$
- This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?)
- Neat vs. Scruffy...

Conditional Probabilities

- Ordinary probabilities for random variables: unconditional or prior probabilities
- $P(a \mid b)=P(a$ AND $b) / P(b)$
- This tells us the probability of a given that we know only b
- If we know cand d, we can't use P(a|b) directly (without additional assumptions)
- Annoying, but solves the qualification problem...

The Scruffy Trap

- Reasoning about probabilities correctly requires knowledge of the joint distribution
- Exponentially large!
- Very convenient!
- Assuming independence (mutual exclusivity) when there is not independence (mutual exclusivity) leads to incorrect answers
- Examples:
- ANDing symptoms by multiplying (independence)
- ORing symptoms by adding (mutual exclusivity)

Probability Solves the Qualification Problem

- $\mathrm{P}\left(\right.$ disease ${ }^{\text {symptom1) }}$
- Defines the probability of a disease given that we have observed only symptom1
- The conditioning bar indicates that the probability is defined with respect to a particular state of knowledge, not as an absolute thing

Condition with Bayes's Rule

$$
\begin{aligned}
& P(A \wedge B)=P(B \wedge A) \\
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Conditioning and Belief Update

- Suppose we know P(ABCDE)
- Observe $B=b$, update our beliefs:

$$
P(A C D E \mid b)=\frac{P(A B C D E)}{P(b)}=\frac{P(A B C D E)}{\sum_{A C D E} P(A b C D E)}
$$

Notation comment: This is a very condensed notation. $\mathrm{P}(\mathrm{ACDE\mid b})$ is not a number; it's a distribution

Let's Play Doctor

- Suppose $\mathrm{P}($ cold $)=0.7, \mathrm{P}($ headache $)=0.6$
- $P($ headache \mid cold $)=0.57$
- What is P (cold|headache) using Bayes Rule:?

$$
\begin{aligned}
& P(c \mid h)=\frac{P(h \mid c) P(c)}{P(h)} \\
& \quad=\frac{0.57 * 0.7}{0.6}=0.66
\end{aligned}
$$

- IMPORTANT: Not always symmetric

Another Example

- From: http://opinionator.blogs.nytimes.com/2010/04/25/chances-are/ (attributed to Gerd Gigerenzer)
- "The probability that one of these women has breast cancer is 0.8 percent. If a woman has breast cancer, the probability is 90 percent that she will have a positive mammogram. If a woman does not have breast cancer, the probability is 7 percent that she will still have a positive mammogram. Imagine a woman who has a positive mammogram. What is the probability that she actually has breast cancer?"
- $95 / 100$ U.S. doctors answered $\sim 75 \%$

Bias

- What if not all events are equally likely?
- Suppose weighted die makes 62 X more likely that anything else. What is average value of outcome?
- $(1+2+3+4+5+6+6) / 7=3.86$
- Probs: $1 / 7$ for $1 \ldots 5$, and $2 / 7$ for 6
- $(1+2+3+4+5)^{*} 1 / 7+6 * 2 / 7=3.86$

Expectation

- Most of us use expectation in some form when we compute averages
- What is the average value of a die roll?
- $(1+2+3+4+5+6) / 6=3.5$

Expectation in General

- Suppose we have some RV X
- Suppose we have some function $f(X)$
- What is the expected value of $f(X)$?

$$
\underset{x}{E} f(x)=\sum_{x} P(X) f(X)
$$

Sums of Expectations

- Suppose we have $f(X)$ and $g(Y)$.
- What is the expected value of $f(\mathrm{X})+\mathrm{g}(\mathrm{Y})$?

$$
\begin{aligned}
& {\underset{X Y}{ }}_{E} f(X)+g(Y)=\sum_{X Y} P(X \wedge Y)(f(X)+g(Y)) \\
& =\sum^{x r} p(x \cdot \text { Expectation }(x \wedge Y) g(Y) \\
& \text { Linearity of } \sum_{r}^{x}(X \wedge Y) f(X)+\sum_{r} \sum_{x} p(X \wedge Y) g(Y) \\
& =\sum_{x}^{X} f(X) \sum_{Y} P(X \wedge Y)+\sum_{r} g(Y) \sum_{X} P(X \wedge Y) \\
& =\sum_{X} f(x) P(X)+\sum_{Y} g(Y) \sum_{X} \rho(X \wedge Y) \\
& =E_{X} f(X)+E_{r} g(Y)
\end{aligned}
$$

Requirements on Continuous Distributions

- $\mathrm{p}(\mathrm{x})>1$ is possible so long as:

$$
\int_{x} p(x) d x=1
$$

- Don't confuse $p(x)$ and $P(X=x)$
- $P(X=x)$ for any x is 0 !

$$
P(x \in A)=\int_{A} p(x) d x
$$

Continuous Random Variables

- Domain is some interval, region, or union of regions
- Uniform case: Simplest to visualize
(event probability is proportional to area)
- Non-uniform case visualized with extra dimension

Gaussian
(normal/bell) distribution:

Cumulative Distributions

- When distribution is over numbers, we can ask:
- $P(X>=c)$ for some c
$-P(X<c)$ for some c
- $P(a<=X<=b)$ for some, a and b
- Solve by
- Summation
- Integration
- Cumulative sometimes called
- CDF
- Distribution function

Sloppy Comment about Continuous Distributions

- In many, many cases, you can generalize what you know about discrete distributions to continuous distributions, replacing " P " with " p " and " Σ " with " ρ "
- Proper treatment of this topic requires measure theory and is beyond the scope of the class

Probability Conclusions

- Probabilistic reasoning has many advantages:
- Solves qualification problem
- Is better than any other system of beliefs (Dutch book argument)
- Probabilistic reasoning is tricky
- Some things decompose nicely: linearity of expectation, conjunctions of independent events, disjunctions of disjoint events
- Some things can be counterintuitive at first: conjunctions of arbitrary events, conditional probability
- Reasoning efficiently with probabilities poses significant data structure and algorithmic challenges for Al
(Roughly speaking, the Al community realized some time around 1990 that probabilities were the right thing and has spent the last 20 years grappling with this realization.)

