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Supervised Learning

¢ Given: Training Set
* Goal: Good performance on test set

e Assumptions:

— Training samples are independently drawn, and
identically distributed (IID)
— Test set isfrom same distribution as training set

Fitting Continuous Data
(Regression)
Datum i has feature vector: ¢=(¢;(x?)...¢(x1))

Has real valued target: t® (row vector)
Concept space: linear combinations of features:

y(x(i);w) - iﬁi),(x(”)wj = ¢(x“))w = ¢(i)w

Learning objective: Search to find “best” w

(This is standard “data fitting” that most people
learn in some formor another.)

Linearity of Regression

e Regression typically consideredalinear
method, but...

Features not necessarily linear

Features not necessarily linear

Features not necessarily linear

and, BTW, features not necessarily linear
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Regression Examples

e Predicting housing price from:
— Housesize, lot size, rooms, neighborhood*, etc.
* Predicting weight from:
— Sex, height, ethnicity, etc.
¢ Predicting life expectancy increase from:
— Medication, disease state, etc.
e Predicting crop yield from:
— Precipitation, fertilizer, temperature, etc.
e Fitting polynomials
— Features are monomials

Features/Basis Functions

Polynomials

Indicators
Gaussian densities

Step functions or sigmoids

Sinusoids (Fourier basis)

Wavelets

e Anythingyou can imagine...

What is “best”?

e No obvious answer to this question
* Three compatible answers:
— Minimize squared error on training set

— Maximize likelihood of the data
(under certain assumptions)

— Project data into “closest” approximation

e Other answers possible

Degree O Fit

© 2007 Christopher Bishop xr
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Degree 1 Fit

© 2007 Christopger Bishop

Degree 3 Fit

© 2007 Christoerr Bishop i 1

Degree 9 Fit

© 2007 Christoerr Bishop

Minimizing Squared Training SetError

e Whyisthisgood?
e How could this be bad?

e Minimize:

N

Elw)= ) (px"w—t")

i=1
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Maximizing Likelihood of Data

e Assume:
— True model isin H
— Data have Gaussian noise

¢ Actually might want:
P(X|H)P(H)
P(X)

¢ |s maximizing P(X|H) a good surrogate?
(maximizing over w)

argmaxP(H | X) =
H

Maximizing P(X|H)
o Assume: ¢l _ 00 4 o)

(i)y2
e Where:  p(gily_ 1 _e7)
(") U\/ﬂexp( 20° )

(Gaussian distribution w/mean 0, standard deviation o)
¢ Therefore:

(t" - p(x")w)’

2

)

P(t" | x" w)= _ exp(-
o2 20

Maximization Continued

¢ Maximizing over entire data set:

n n ) _ alih, 12
TP 19",6)-] [——exp(- =20,
=1 =1 ON2TT 20

e Maximizing equivalent log formulation:
(ignoring constants)

i_(t(i) _¢(i)w)2
i=1
e Or minimizing: )
E= E(t”) -¢"w)’ Look familiar?
i=1

Checkpoint

e So far we have considered:
— Minimizing squared error on training set

— Maximizing Likelihood of training set
(given model, and some assumptions)

 Differentapproaches w/same objective!
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Solving the Optimization Problem

¢ Nota bene: Good to keep optimization problem
and optimization technique separate in your mind

e Some optimization approaches:
— Gradient descent

— Direct Minimization

Minimizing E by Gradient Descent

E(w)

gradientvector

Start with initial weight vector w

JE(W) JE(w) IE(w)

Compute the gradient V.E=

Iy
w,  Iw, aw,

Compute W< W-qVE Whereaisthe step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)

Gradient Descent Issues

¢ For this particular problem:
— No local optima
— Convergence “guaranteed” if done in “batch”

¢ In general
— Local optimum only (local=global for lin. regression)
— Batch mode more stable

— Incremental possible
e Can oscillate
¢ Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

E= E(tm _ ¢“’w)2

i=1
V Ec E(tu) — ¢ w)p?
=l scalar row vector
Set gradient to 0to find min:

i(tu) _ ¢mw)¢m -0 d)(X(l))
N , @)
Eqﬁ”’t'” —WTE(¢(")T¢(” -0 ®= ¢(X )

Ot-w O P=D't-O dPw=0

d(x")

w= (@’cb)’l o't

10/18/16



Geometric Interpretation

t=(t®...t") =pointin n-space
Ranging overw, ®w=H =

— column space of features

— subspace of R" occupied by H

Goal: Find “closest” pointin Hto t

Suppose closeness = Euclidean distance

Another Geometric Interpretation

(Euclidean distance minimized
by orthogonal projection)

H space (linear combinations of @)

Minimizing Euclidean Distance

e Minimize: t-dwl,
e For n data points:

i(t(f) _ ¢(f)w)2

e Equivalent to minimizing:

E(t“' —¢"w)? Look familiar?
i=1

Checkpoint

e Threedifferent ways to pickwin H
— Minimize squared error on training set
— Maximize likelihood of training set
— Distance minimizing projection into H

¢ Alllead to same optimization problem!

argminf(w)=§(¢"’w—t“’)z
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Geometric Solution

e Geometric Approach (Strang)
e Let ® be the feature (design) matrix
e Require orthogonality:

Vz:(Dz) (Pw-t)=0

TN

Any vector in H Line from tto solution

Vz:z' [®'DdW-D't]=0

Direct Solution Continued

* Whenisthistrue: Vz:; [®d’ow-®'t]=0
e When:

O Pw-D't=0

Tl T Same solution as direct
w= (D P)Tpt

minimization of error

When does the inverse exist?

Hidden Assumption

e Many of our solution methods requirethat
our features (columns of ®) that are
linearly independent

e What if they aren’t?

— Solutionisn’t unique
— Can use pseudoinverse (pinvin matlab)

— Finds solution with minimum 2-norm

What if t{) is a vector?
e Nothing changes!
e Scalar prediction:
w=(DO'D) D't
* Vector prediction (exercise):

W=(®' )" d'T
Weight matrix/ Target matrix
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Checkpoint

e What we have shown:

— Three different ways of viewing regression as an
optimization problem

— All three lead to the same solution
¢ What we have not shown
— How to pick features

— Whether these views are the “right” objective
function

What about other criteria?
¢ Minimizing worse case (L..) loss?
minwmaxi(q)“)w—t“))

e Solve by linear program...

What is the Best Choice of Features?

0 . 1
Noisy Source Data
© 2007 Christopher Bishop
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Degree 1 Fit
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Degree 3 Fit

© 2007 Christoerr Bishop X

Degree 9 Fit

© 2007 Christoerr Bishop

Observations

e Degree 3 is thebest match to the source
e Degree 9is the best match to the samples
¢ Performanceon test data:

—6— Training
—6— Test

© 2007 Christopher Bishop
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Understanding Loss

e Supposewe have a squared error loss
function: L (gets too confusing to use E)

e Define h(x)=E[t|x]

ETL]= [ty - h(x)}*p(x)dx + Jih6q - t}* plx, t)cixdt
\ \

] J
I 1
Noise in distribution of targets
(nothing we can do)

Mismatch between hypothesis
and target —we can influence this

Bias and Variance

E[L] = [{y(x) = h(x)}*p(x)aix + [{h(x) - £}’ p(x, t)dxdit

Since y(x) is fit to data, consider expectation over different draws
of a fixed size data set for the part we control

E, [(v(x:D)-hix)Y’

~{E, [yx:D)-hix) [ +E, [ ty(x:D)-E, [y(x;D) ]
\ ) \ Y J

bias variance

Understanding Bias
{E,[y(x;D) - hix)

e Measures how well our approximation
architecture can fit the data

e Weak approximators (e.g. low degree
polynomials) will have high bias

e Strongapproximators (e.g. high degree
polynomials, will have lower bias)

Understanding Variance
E,|{y(x:0)~E,[y(x;: D)}

e Nodirect dependence on target values

¢ For a fixed size D:
— Strong approximators will tend to have more variance
— Weak approximators will tend to have less variance

¢ Variance will typically disappear as size of D goes
toinfinity
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Example: 20 points
y =x +2sin(1.5x) + N(0,0.2)

fitted hypothesis

Hypothesis space = linear in x

50 fits (20 examples each)

0 2 6 8 10

.
What are we seeing here?

Bias

true function

mean h

Variance
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Degree 9 Fit Revisited

© 2007 Christoerr Bishop xr 1

Trade off Between Bias and Variance

Is the problem a bad choice of polynomial?

Is the problem that we don’ t have enough data?
Answer: Yes

Lower bias ->Higher Variance

Higher bias -> Lower Variance

Bias and Variance: Lessons Learned

e When data are scarce relative to the
“capacity” of our hypothesis space
— Variance can be a problem

— Restricting hypothesis space can reduce
variance at cost of increased bias

e When data are plentiful
— Variance isless of a concern

— May afford to use richer hypothesis space

Concluding Comments

¢ Regression isthe most basic machinelearning
algorithm

Multipleviews are all equivalent:
— Minimize squared loss

— Maximize likelihood

— Orthogonal projection

Big question: Choosing features

First steps towards understanding this:
Biasand variance trade off
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