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Supervised	Learning

• Given:		Training	Set
• Goal:		Good	performance	on	test	set

• Assumptions:
– Training	samples	are	independently	drawn,	and	
identically	distributed	(IID)

– Test	set	is	from	same	distribution	as	training	set

Fitting	Continuous	 Data
(Regression)

• Datum	i	has	feature	vector: φ=(φ1(x(i))…φk(x(i)))
• Has	real	valued	target: t(i)
• Concept	space:	 	linear	combinations	of	features:

• Learning	objective:	 	Search	to	find	“best”	w
• (This	is	standard	“data	fitting”	that	most	people	
learn	in	some	form	or	another.)

y(x(i) ;w)= φ j (x
(i))wj

j=1

k

∑ =φ(x(i))w =φ (i)w

(row vector)

Linearity of Regression

• Regression	typically	considered	a	linear
method,	but…

• Features	not	necessarily	linear
• Features	not	necessarily	linear
• Features	not	necessarily	linear
• Features	not	necessarily	linear
• and,	BTW,	features	not	necessarily	linear
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Regression	 Examples

• Predicting	 housing	 price	 from:
– House	size,	lot	size,	rooms,	neighborhood*,	etc.

• Predicting	 weight	 from:
– Sex,	height,	ethnicity,	etc.

• Predicting	 life	 expectancy	 increase	 from:
– Medication,	disease	state,	etc.

• Predicting	 crop	 yield	from:
– Precipitation,	fertilizer,	temperature,	etc.

• Fitting	 polynomials
– Features	are	monomials

Features/Basis	Functions

• Polynomials
• Indicators
• Gaussian	densities
• Step	functions	or	sigmoids
• Sinusoids	(Fourier	basis)
• Wavelets
• Anything	you	can	imagine…

What	 is	“best”?

• No	obvious	answer	to	this	question
• Three	compatible	answers:

– Minimize	squared	 error	on	training	set
– Maximize	 likelihood	of	the	data
(under	certain	assumptions)

– Project	data	into	“closest”	approximation

• Other	answers	possible

Degree	0	Fit

© 2007 Christopher Bishop
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Degree	 1	Fit

© 2007 Christopher Bishop

Degree	3	Fit

© 2007 Christopher Bishop

Degree	 9	Fit

© 2007 Christopher Bishop

Minimizing	Squared	Training	Set	Error

• Why	is	this	good?

• How	could	this	be	bad?

• Minimize:

E(w)= φ(x(i))w−t (i)( )
2

i=1

N

∑
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Maximizing	 Likelihood	 of	Data

• Assume:
– True	 model	 is	in	H
– Data	 have	 Gaussian	noise

• Actually	might	want:

• Is	maximizing	P(X|H)	a	good	surrogate?	
(maximizing	over	w)

)(
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Maximizing	P(X|H)

• Assume:

• Where:

• Therefore:
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(Gaussian	distribution	w/mean	 0,	standard	deviation	 σ)

P(t (i)|x (i) ,w)= 1

σ 2π
exp(− (t

(i) −φ(x (i))w)2

2σ 2
)

• Maximizing	over	entire	data	set:

• Maximizing	equivalent	log	formulation:
(ignoring	constants)

• Or	minimizing:

P(t (i)|φ (i) ,θ)
i=1

n

∏ =
1

σ 2π
exp(− (t

(i) −φ (i)w)2

2σ 2
)

i=1

n

∏

−(t (i) −φ (i)w)2
i=1

n

∑

E = (t (i) −φ (i)w)2
i=1

n

∑ Look	familiar?

Maximization	 Continued Checkpoint

• So	far	we	have	considered:
– Minimizing	squared	error	on	training	set
– Maximizing	Likelihood	of	training	set
(given	model,	and	some	assumptions)

• Different	approaches	w/same	objective!
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Solving	the	Optimization	Problem

• Nota	bene:	 	Good	to	keep	 optimization	problem	
and	optimization	technique	separate	 in	your	mind

• Some	optimization	approaches:
– Gradient	 descent
– Direct	 Minimization

Minimizing	E	by	Gradient	Descent	

ww 1w2

gradient vector

w 0

Start	with	 initial	 weight	vector	w 0

E(w)
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w !Compute	 the	gradient

E∇−← αwwCompute where	α is	the	step	size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)

Gradient	Descent	 Issues

• For	this	particular	problem:
– No	local	optima
– Convergence	“guaranteed”	if	done	in	“batch”

• In	general
– Local	optimum	only	(local=global	for	lin.	regression)
– Batch	mode	more	stable
– Incremental	possible

• Can	oscillate
• Use	decreasing	step	size	(Robbins-Monro)	 to	stabilize

Solving	the	Minimization	Directly

E = (t (i) −φ (i)w)2
i=1

n

∑

∇wE∝ (t (i) −φ (i)w)
i=1

n

∑ φ (i)

(t (i) −φ (i)w)
i=1

n

∑ φ (i) = 0

φ (i)t (i) −wT (φ (i))Tφ (i)

i=1

n

∑
i=1

n

∑ = 0

ΦTt−wTΦTΦ=ΦTt−ΦTΦw = 0

w = ΦTΦ( )
−1
ΦTt

Set gradient to 0 to find min:
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Geometric	 Interpretation

• t=(t(1)…t(n))	 =	point	in	n-space
• Ranging	over	w,	Φw	=	H	=

– column	space	of	features
– subspace	 of	Rn occupied	by	H

• Goal:	 	Find	“closest”	 point	in	H	to	t

• Suppose	closeness	=	Euclidean	distance

Another	Geometric	Interpretation

t

H	space	 (linear	combinations	of	Φ)	

(Euclidean	 distance	minimized
by	orthogonal	projection)

Minimizing	 Euclidean	 Distance

• Minimize:
• For	n	data	points:

• Equivalent	to	minimizing:

2wt Φ−

(t (i) −φ (i)w)2
i=1

n

∑

Look	familiar?(t (i) −φ (i)w)2
i=1

n

∑

Checkpoint

• Three	different	ways	to	pick	w in	H
– Minimize	squared	error	on	training	set
– Maximize	likelihood	of	training	set
– Distance	minimizing	projection	into	H

• All	lead	to	same	optimization	problem!

w
argminE(w)= φ (i)w−t (i)( )

2

i=1

N

∑
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Geometric	 Solution

• Geometric	Approach	(Strang)
• Let	Φ be	the	feature	(design)	matrix
• Require	orthogonality:

0)()(: =−ΦΦ∀ twTzz

Any	vector	 in	H Line	 from	 t to	solution	

0][: =Φ−ΦΦ∀ tw TTTzz

Direct	Solution	Continued

• When	is	this	true:
• When:	

tw

tw
TT

TT

ΦΦΦ=

=Φ−ΦΦ
−1)(

0

When	does	the	 inverse	exist?

0][: =Φ−ΦΦ∀ tw TTTzz

Same	 solution	as	direct
minimization	of	error

Hidden	Assumption

• Many	of	our	solution	methods	require	that	
our	features	(columns	of	Φ)	that	are	
linearly	independent

• What	if	they	aren’t?
– Solution	isn’t	unique
– Can	use	pseudoinverse	 (pinv	in	matlab)
– Finds	solution	with	minimum	2-norm

What	if	t(i) is	a	vector?

• Nothing	changes!
• Scalar	prediction:

• Vector	prediction	(exercise):

tw TT ΦΦΦ= −1)(

TW TT ΦΦΦ= −1)(

Weight matrix Target matrix
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Checkpoint

• What	we	have	shown:
– Three	 different	ways	of	viewing	regression	 as	 an	
optimization	problem

– All	three	 lead	to	the	same	 solution

• What	we	have	not	shown
– How	to	pick	features
– Whether	these	 views	 are	the	“right” objective	
function

What	about	other	criteria?

• Minimizing	worse	case	(L∞)	loss?

• Solve	by	linear	program…

minwmaxi φ
(i)w−t (i)( )

What	 is	the	Best	Choice	of	Features?

Noisy	Source	Data
© 2007 Christopher Bishop

Degree	0	Fit

© 2007 Christopher Bishop
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Degree	 1	Fit

© 2007 Christopher Bishop

Degree	3	Fit

© 2007 Christopher Bishop

Degree	 9	Fit

© 2007 Christopher Bishop

Observations

• Degree	3	is	the	best	match	to	the	source
• Degree	9	is	the	best	match	to	the	samples
• Performance	on	test	data:

© 2007 Christopher Bishop
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Understanding	 Loss

• Suppose	we	have	a	squared	error	loss	
function:	L	(gets	too	confusing	to	use	E)

• Define	h(x)=E[t|x]

∫∫ −+−= dtdtpthdphyLE xxxxxxx ),(})({)()}()({][ 22

Noise	in	distribution	of	targets	
(nothing	we	can	do)Mismatch	between	 hypothesis

and	target	 – we	 can	influence	this

Bias	and	Variance

∫∫ −+−= dtdtpthdphyLE xxxxxxx ),(})({)()}()({][ 22
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variancebias

Since	y(x)	is	fit	to	data,	 consider	expectation	over	different	draws
of	a	 fixed	size	data set	for	the	part	we	 control

Understanding	 Bias

• Measures	how	well	our	approximation	
architecture	can	fit	the	data

• Weak	approximators	(e.g.	low	degree	
polynomials)	will	have	high	bias

• Strong	approximators	(e.g.	high	degree	
polynomials,	will	have	lower	bias)

[ ] 2})();({ xx hDyED −

Understanding	Variance

• No	direct dependence	on	target	values
• For	a	fixed	size	D:

– Strong	approximators	will	tend	to	have	more	variance
– Weak	approximators	will	tend	to	have	less	variance

• Variance	will	typically	disappear	as	size	of	D	goes	
to	infinity

[ ][ ]2});();({ DyEDyE DD xx −
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Example:	20	points
y	=	x	+	2	sin(1.5x)	+	N(0,0.2)

Hypothesis	 space	=	 linear	 in	x

50	fits	(20	examples	each)

What	are	we	 seeing	here?

Bias Variance
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Degree	 9	Fit	Revisited

© 2007 Christopher Bishop

Trade	off	Between	Bias	and	Variance
• Is	the	problem	a	bad	choice	of	polynomial?
• Is	the	problem	that	we	don’t	have	enough	data?
• Answer:		Yes
• Lower	bias	->	Higher	Variance
• Higher	bias	->	Lower	Variance	

Bias	and	Variance:	 	Lessons	 Learned

• When	data	are	scarce	relative	to	the	
“capacity” of	our	hypothesis	space
– Variance	 can	be	a	problem
– Restricting	hypothesis	 space	can	reduce	
variance	at	cost	of	increased	 bias

• When	data	are	plentiful
– Variance	 is	less	 of	a	concern
– May	 afford	to	use	richer	hypothesis	 space

Concluding	Comments

• Regression	is	the	most	basic	machine	learning	
algorithm

• Multiple	views	are	all	equivalent:
– Minimize	squared	loss
– Maximize	likelihood
– Orthogonal	projection

• Big	question:		Choosing	features
• First	steps	towards	understanding	this:

Bias	and	variance	trade	off


