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Reinforcement Learning

Ron Parr
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RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively 

small amounts of experience

• Some notable successes:
– Playing Atari games
– Aerobatic helicopter maneuvers
– Go

• Sutton’s seminal RL paper is 178th most cited ref. 
in computer science (Citeseerx 11/16);  Sutton & 
Barto RL Book is the 7th most cited

From Andrew Ng’s home page

Comparison w/Other Kinds of Learning

• Learning often viewed as:
– Classification (supervised), or
– Model learning (unsupervised)

• RL is between these (delayed signal)

• What the last thing that happens before an 
accident?

Overview

• Review of value determination

• Motivation for RL

• Algorithms for RL
– Overview
– TD
– Q-learning
– Approximation
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Solving for Values

Vp =gPpVp +Rp
For moderate numbers of states we can solve this system exacty:

Vp = (I-gPp )-1Rp

Guaranteed invertible because
has spectral radius <1

pgP

Iteratively Solving for Values

  Vp = gPpV +R
For larger numbers of states we can solve this system indirectly:

      Vp i+1 = gPpVp i +R
Guaranteed convergent because
has spectral radius <1 for g<1

Convergence not guaranteed for g=1

pgP

Overview

• Review of value determination

• Motivation for RL

• Algorithms for RL
– Overview
– TD
– Q-learning
– Approximation

Why We Need RL

• Where do we get transition probabilities?

• How do we store them?
• Big problems have big models
• Model size is quadratic in state space size

• Where do we get the reward function?
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RL Framework

• Learn by “trial and error”
• No assumptions about model
• No assumptions about reward function
• Assumes:

– True state is known at all times
– Immediate reward is known
– Discount is known

RL for Our Game Show

• Problem:  Don’t know prob. of answering correctly

• Solution:
– Buy the home version of the game
– Practice on the home game to refine our strategy
– Deploy strategy when we play the real game

Model Learning Approach

• Learn model, solve
• How to learn a model:

– Take action a in state s, observe s’
– Take action a in state s, n times
– Observe s’ m times
– P(s’|s,a) = m/n
– Fill in transition matrix for each action
– Compute avg. reward for each state

• Solve learned model as an MDP

Limitations of Model Learning

• Partitions learning, solution into two phases
• Model may be large

– Hard to visit every state lots of times
– Note:  Can’t completely get around this problem…

• Model storage is expensive
• Model manipulation is expensive
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Overview

• Review of value determination

• Motivation for RL

• Algorithms for RL
– TD
– Q-learning
– Approximation

Temporal Differences

• One of the first RL algorithms
• Learn the value of a fixed policy

(no optimization; just prediction)
• Recall iterative value determination:

    
Vp

i+1(s) = R(s,p(s)) + g P(s' | s,p(s))Vp
i(s' )

s'

å

Problem:  We don’t know this.

Temporal Difference Learning

• Remember Value Determination:

• Compute an update as if the observed s’ and r 
were the only possible outcomes:

• Make a small update in this direction:

  0 < a £1

    
V i+1(s) = R(s,p(s)) + g P(s' | s,p(s))V i(s')

s'

å

  V
temp (s) = r +gV i(s')

    V
i+1(s) = (1 -a)V i(s)+aV temp (s)

Note:  we have dropped the p subscripts

Idea:  Value Function Soup

Suppose:  a = 0.1

V(s)

Upon observing s’:
•Discard 10% of soup
•Refill with Vtemp(s)
•Stir
•Repeat

One vat for
each state

V i+1(s)= (1-a)V i (s)+aV temp(s)
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Example:  Home Version of Game

$0 $0 $0 $0

$100 $1,100 $11,100

$61,100

Suppose our current estimate:  V(s3)=15K
We play and get the question wrong

Vtemp=0
V(s3) = (1-a)15K + a0

s3

Convergence?

• Why doesn’t this oscillate?
– e.g. consider some low probability s’ with a 

very high (or low) reward value

– This could still cause a big jump in V(s)

Convergence Intuitions

• Need heavy machinery from stochastic 
process theory to prove convergence

• Main ideas:
– Iterative value determination converges
– TD updates approximate value determination
– Samples approximate expectation 

    
V i+1(s) = R(s,p(s)) + g P(s' | s,p(s))V i(s')

s'

å

Ensuring Convergence

• Rewards have bounded variance
•
• Every state visited infinitely often
• Learning rate decays so that:

–
–

These conditions are jointly sufficient to ensure
convergence in the limit with probability 1.

  0 £ g < 1

  
a i(s) = ¥i

¥å
    

a i
2 (s) < ¥

i

¥å
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How Strong is This?

• Bounded variance of rewards:  easy
• Discount:  standard
• Visiting every state infinitely often:  Hmmm…
• Learning rate:  Often leads to slow learning
• Convergence in the limit:  Weak

– Hard to say anything stronger w/o knowing the mixing rate of 
the process

– Mixing rate can be low; hard to know a priori

• Convergence w.p. 1:  Not a problem.

Using TD for Control

• Recall value iteration:

• Why not pick the maximizing a and then do:

– s' is the observed next state after taking action a

    
V i+1(s) =maxa R(s,a) +g P(s' | s,a)V i(s')

s'

å

V i+1(s)= (1-a)V i (s)+aV temp(s)

Problems

• Pick the best action w/o model?

• Must visit every state infinitely often
– What if a good policy doesn’t do this?

• Learning is done “on policy”
– Taking random actions to make sure that all states 

are visited will cause problems

Q-Learning Overview

• Want to maintain good properties of TD

• Learns good policies and optimal value function, 
not just the value of a fixed policy

• Simple modification to TD that learns the optimal 
policy regardless of how you act! (mostly)
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Q-learning

• Recall value iteration:

• Can split this into two functions:
    
V i+1(s) =maxa R(s,a) +g P(s' | s,a)V i(s')

s'

å

    

Qi+1(s,a) = R(s,a) +g P(s' | s,a)V i(s')
s'

å

V i+1(s) =maxa Qt +1(s,a)

Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

  Q
temp (s,a) = r +gmaxa ' Q

i(s',a')

    Q
i+1(s,a) = (1 -a)Qi(s,a)+aQtemp (s,a)

Q-learning Properties

• Converges under same conditions as TD
• Still must visit every state infinitely often
• Separates policy you are currently following from 

value function learning:

  Q
temp (s,a) = r +gmaxa ' Q

i(s',a')

    Q
i+1(s,a) = (1 -a)Qi(s,a) +aQtemp (s,a)

Note:  If there is only one action possible in each state, then 
Q-learning and TD-learning are identical

Value Function Representation

• Fundamental problem remains unsolved:
– TD/Q learning solves model-learning problem, but
– Large models still have large value functions
– Too expensive to store these functions
– Impossible to visit every state in large models

• Function approximation
– Use machine learning methods to generalize
– Avoid the need to visit every state
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Function Approximation

• General problem:  Learn function f(s)
– Linear regression
– Neural networks
– State aggregation (violates Markov property)

• Idea:  Approximate f(s) with g(s,)
– g is some easily computable function of s and 
– Try to find  that minimizes the error in g

Linear Regression 
review

• Define a set of basis functions (vectors)

• Approximate f with a weighted combination of these

• Example:  Space of quadratic functions:

• Orthogonal projection minimizes SSE

f
1
(s),f

2
(s)...f

k
(s)

g(s)= w
j
f

j
(s)

j=1

k

å

f
1
(s)=1,f

2
(s)= s,f

3
(s)= s2

Updates with Approximation

• Recall regular TD update:

• With function approximation:

• Update:
V(s)»V(s,w) Vector

operations

    V
i+1(s) = (1 -a)V i(s) +aV temp (s)

Neural networks are a special case of this.

wi+1 =wi +a(V temp(s)-V i (s))Ñ
w
V(s,w)

For linear value functions

• Gradient is trivial:

• Update is trivial:

V(s,w)= w
j
f

j
(s)

j=1

k

å

Ñ
w j

V(s,w)=f
j
(s)

wi+1 =wi +a(V temp(s)-V i (s))Ñ
w
V(s,w)



9

Properties of approximate RL

• Exact case (tabular representation) = special case 
• Can be combined with Q-learning

• Convergence not guaranteed
– Policy evaluation with linear function approximation 

converges if samples are drawn “on policy”
– In general, convergence is not guaranteed

• Chasing a moving target
• Errors can compound

• Success has often required very well chosen 
features, but this may be changing (deep RL)

Swept under the rug…

• Difficulty of finding good features

• Partial observability

• Exploration vs. Exploitation

Conclusions

• Reinforcement learning solves an MDP

• Converges for exact value function representation

• Can be combined with approximation methods


