- Working with tensors
- General Idea: convert tensors into matrices
- slicing
take $M_{i, j}=T_{1, i, j}$
d

(or $\left.T_{i, 1, j} T_{i, j, 1}\right)$
$\operatorname{rank}(M) \leqslant \operatorname{rank}(T)$
Often we will need to compare more than one slices.
(recall: tensor decomposition $=$ simutianeous matrix decamp)
Lose information (bad for sample complexity)
- Flatening

$$
\begin{aligned}
& T_{1,(2,3)} \\
& M_{i,(j, k)}=T_{i, j, k}
\end{aligned}
$$

again, $\operatorname{rank}(N) \leq \operatorname{rank}(T)$

$$
\|M\| \geq\|T\|
$$

- Linear transform

$T(U, I, I)$: apply U to the first dimension

$$
T(i, i, j) \Leftarrow U^{T} T(:, i, j)
$$

(why U^{\top} in the notation? See next operation)

- Projection

$$
\begin{aligned}
& T(u, I, I) \text { is a matrix } M \\
& M_{i j}=\langle u, T(i, i, j)\rangle
\end{aligned}
$$

$$
=u^{\top} T(i, i, j)
$$

special case of linear transformation, more general than slices.

- The low rank decomposition.

$$
T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}
$$

- Low rank form interacts well with operations above

$$
\begin{aligned}
& T_{1,(2,3)}=\sum_{i=1}^{r} u_{i}\left(v_{i} \otimes w_{i}\right)^{\top} \\
& T(U, I, I)=\sum_{i=1}^{r}\left(U_{u_{i}}^{\top}\right) \otimes v_{i} \otimes v_{i m e n s i o n d ~ v e c t o r ~}^{r} \\
& T(u, I, I)=\sum_{i=1}^{r}\left\langle u, u_{i}\right\rangle v_{i} w_{i}^{\top} \quad \text { (matrix) } \\
& T(u, v, I)=\sum_{i=1}^{r}\left\langle u, u_{i}\right\rangle\left\langle v, v_{i}\right\rangle w_{i} \quad \text { (vector) } \\
& T(u, v, w)=\sum_{i=1}^{r}\left\langle u, u_{i}\right\rangle\left\langle v, v_{i}\right\rangle\left\langle w, w_{i}\right\rangle \text { (number) }
\end{aligned}
$$

- Finding tensor decomposition

Jenrich's algorithm
Suppose $T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}$
pick two random vectors a, b

$$
\begin{aligned}
& M_{a}=T(a, I, I)=\sum_{i=1}^{r}\left\langle a, u_{i}\right\rangle v_{i} w_{i}^{\top} \\
& M_{b}=T(b, I, I)=\sum_{i=1}^{r}\left\langle b, u_{i}\right\rangle v_{i} w_{i}^{\top} \\
& v_{i}^{\prime}=\text { eigenvectors of } M_{a} M_{b}^{-1} \\
& w_{i}^{\prime}=\text { eigenvectors of }\left(M_{a}^{-1} M_{b}\right)^{\top}
\end{aligned}
$$

pair $\left(v_{i}, w_{i}\right)$ if their eigenvalues are reciprocals Solve for u_{i} (system of linear equations)
Theorem: If $\left\{v_{i}\right\}\left\{w_{i}\right\}$ are linearly independent, $\left\{u_{i}\right\}$ are
pairwise independent (corresponds to different directions), then tensor decomposition is unique. With probability 1, Jenrich's algorithm finds correct u_{i}, v_{i}, w_{i} (up to permutation and scaling)

- Proof: Let $V=\left[\psi_{1} \psi_{2} \cdots \psi_{r}\right] \quad W=\left[\omega_{1} \omega_{2} \cdots \cdots \psi_{r}\right]$

$$
\begin{aligned}
& M_{a}=V D_{a} W^{\top} \quad\left(D_{a}(i, i)=\left\langle a, u_{i}\right\rangle\right) \\
& M_{b}=V D_{b} W^{\top} \quad\left(D_{b}(i, i)=\left\langle b, u_{i}\right\rangle\right) \\
& M_{a} M_{b}^{-1}=V D_{a} D_{b}^{-1} V^{-1} \\
& \left.\quad \text { if } r<d, V^{-1} \text { is "pseudo inverse" }\right) \\
& \left(M_{a}^{-1} M_{b}\right)^{\top}=W D_{b}^{-1} D_{a} W^{-1} \\
& W \cdot P \cdot I \quad D_{a}(i, i) \neq 0, D_{b}(i, i) \neq 0, \frac{D_{a}(i, i)}{D_{b}(i, i)} \text { unique }
\end{aligned}
$$

\Rightarrow Vi's are eigenvectors of $M_{a} M_{b}^{-1}$

$$
w_{i}^{\prime} \xrightarrow{\prime}\left(M_{a}^{-1} M_{b}\right)^{\top}
$$

and the pairing is correct
Final step: Let $Z \in \mathbb{R}^{d^{2} \times r}=\left(\mid v_{n} \otimes \omega_{1}, v_{-} \otimes w_{2} \cdots \cdots v_{r} \otimes \omega_{1}\right)$

$$
=V \Theta W
$$

(Khatri-Rao product)
then $T_{1,(2,3)}=U Z^{\top}$.
Solution U is unique if Z is full rank,
(but this is trivial because even V is full rank)

