Differential Privacy: Basics

CompSci 590.03
Instructor: Ashwin Machanavajjhala
Outline of lecture

• Differential Privacy

• Basic Algorithms
 – Laplace Mechanism

• Composition Theorems

• Exercise
Differential Privacy

For every pair of inputs that differ in one row

For every output ...

Adversary should not be able to distinguish between any D_1 and D_2 based on any O

$$\log \left(\frac{\Pr[A(D_1) = O]}{\Pr[A(D_2) = O]} \right) < \varepsilon \quad (\varepsilon > 0)$$
Why pairs of datasets *that differ in one row*?

For every pair of inputs that differ in one row

\[D_1 \quad D_2 \]

Simulate the presence or absence of a single record

For every output ...

\[O \]
Why *all* pairs of datasets ...?

For every pair of inputs that differ in one row:

\[D_1 \quad \text{and} \quad D_2 \]

For every output:

\[O \]

Guarantee holds no matter what the other records are.
Why all outputs?

Set of all outputs

D_1

D_2

$A(D_1) = O_1$

$P[A(D_1) = O_1]$

$P[A(D_2) = O_k]$
Should not be able to distinguish whether input was D_1 or D_2 no matter what the output.
Privacy Parameter ϵ

For every pair of inputs that differ in one row

D_1 D_2

For every output ...

O

Pr[$A(D_1) = O] \leq e^\epsilon \text{ Pr}[A(D_2) = O]$

Controls the degree to which D_1 and D_2 can be distinguished. Smaller the ϵ more the privacy (and better the utility)
Outline of the Module 2

• Differential Privacy

• Basic Algorithms
 – Laplace Mechanism

• Composition Theorems
Can deterministic algorithms satisfy differential privacy?
Non-trivial deterministic Algorithms do not satisfy differential privacy

Space of all inputs

Space of all outputs (at least 2 distinct outputs)
Non-trivial deterministic Algorithms do not satisfy differential privacy

Each input mapped to a distinct output.
There exist two inputs that differ in one entry mapped to different outputs.
Random Sampling ...

... also does not satisfy differential privacy

\[
\Pr[D_2 \rightarrow O] = 0 \quad \text{implies} \quad \log\left(\frac{\Pr[D_1 \rightarrow O]}{\Pr[D_2 \rightarrow O]}\right) = \infty
\]
Output Randomization

- Add noise to answers such that:
 - Each answer does not leak too much information about the database.
 - Noisy answers are close to the original answers.
Laplace Mechanism

Database → True answer → q(D) + η → Researcher

Privacy depends on the λ parameter

\[h(\eta) \propto \exp(-\eta / \lambda) \]

Mean: 0, Variance: 2 \(\lambda^2 \)

Lecture 2: 590.03 Fall 16
How much noise for privacy?

[Sensitivity]: Consider a query \(q: I \rightarrow R \). \(S(q) \) is the smallest number s.t. for any neighboring tables \(D, D' \),

\[
| q(D) - q(D') | \leq S(q)
\]

[Thm]: If sensitivity of the query is \(S \), then the following guarantees \(\varepsilon \)-differential privacy.

\[
\lambda = S / \varepsilon
\]

[Dwork et al., TCC 2006]
Sensitivity: COUNT query

- Number of people having disease
- Sensitivity = 1

- Solution: $3 + \eta$, where η is drawn from $\text{Lap}(1/\varepsilon)$
 - Mean = 0
 - Variance = $2/\varepsilon^2$
Sensitivity: SUM query

• Suppose all values x are in [a,b]

• Sensitivity = b
Privacy of Laplace Mechanism

- Consider neighboring databases D and D’
- Consider some output O

\[
\frac{\Pr [A(D) = O]}{\Pr [A(D') = O]} = \frac{\Pr [q(D) + \eta = O]}{\Pr [q(D') + \eta = O]}
\]

\[
= \frac{e^{-|O-q(D)|/\lambda}}{e^{-|O-q(D')|/\lambda}}
\]

\[
\leq e^{|q(D) - q(D')|/\lambda} \leq e^{S(q)/\lambda} = e^\epsilon
\]
Utility of Laplace Mechanism

• Laplace mechanism works for **any function** that returns a real number

• Error: \(E(\text{true answer} – \text{noisy answer})^2 \)

 \[
 = \text{Var}(\text{Lap}(S(q)/\varepsilon))
 \]

 \[
 = 2\times S(q)^2 / \varepsilon^2
 \]
Outline of the Module 2

• Differential Privacy
• Basic Algorithms
 – Laplace & Exponential Mechanism
 – Randomized Response
• Composition Theorems
Why Composition?

• Reasoning about privacy of a complex algorithm is hard.

• Helps software design
 – If building blocks are proven to be private, it about privacy of a complex algorithm built e blocks.
A bound on the number of queries

• In order to ensure utility, a statistical database must leak some information about each individual

• We can only hope to bound the amount of disclosure

• Hence, there is a limit on number of queries that can be answered
Dinur Nissim Result

• A vast majority of records in a database of size n can be reconstructed when $n \log(n)^2$ queries are answered by a statistical database ... [Dinur-Nissim PODS 2003]

... even if each answer has been arbitrarily altered to have up to $o(\sqrt{n})$ error.
Sequential Composition

- If M₁, M₂, ..., Mₖ are algorithms that access a private database D such that each Mᵢ satisfies εᵢ -differential privacy,

then the combination of their outputs satisfies ε-differential privacy with ε = ε₁ + ... + εₖ
Privacy as Constrained Optimization

• Three axes
 – Privacy
 – Error
 – Queries that can be answered

• E.g.: Given a fixed set of queries and privacy budget ε, what is the minimum error that can be achieved?
Parallel Composition

- If \(M_1, M_2, \ldots, M_k \) are algorithms that access disjoint databases \(D_1, D_2, \ldots, D_k \) such that each \(M_i \) satisfies \(\varepsilon_i \)-differential privacy,

then the combination of their outputs satisfies \(\varepsilon \)-differential privacy with \(\varepsilon = \max\{\varepsilon_1, \ldots, \varepsilon_k\} \).
Postprocessing

• If M_1 is an ϵ-differentially private algorithm that accesses a private database D,

then outputting $M_2(M_1(D))$ also satisfies ϵ-differential privacy.
Case Study: K-means Clustering
Kmeans

- Partition a set of points x_1, x_2, \ldots, x_n into k clusters S_1, S_2, \ldots, S_k such that the following is minimized:

$$
\sum_{i=1}^{k} \sum_{x_j \in S_i} \| x_j - \mu_i \|_2^2
$$

Mean of the cluster S_i
Kmeans

Algorithm:
• Initialize a set of k centers
• Repeat
 Assign each point to its nearest center
 Recompute the set of centers
 Until convergence ...
• Output the final k centers
Exercise

• What is a differentially private algorithm for releasing a k-means clustering (i.e., outputting the final set of k centers)?
Summary

• Differentially private algorithms ensure an attacker can’t infer the presence or absence of a single record in the input based on any output.

• Building blocks
 – Laplace mechanism

• Composition rules help build complex algorithms using building blocks