CompSci 516
Data Intensive Computing Systems

Lecture 20
Data Mining
and
Mining Association Rules

Instructor: Sudeepa Roy
Optional Reading:

1. [RG]: Chapter 26

2. “Fast Algorithms for Mining Association Rules”
 Agrawal and Srikant, VLDB 1994

20610 citations on Google Scholar in Nov, 2016 (19,496 in April, 2016)

One of the most cited papers in CS!

• Acknowledgement:
The following slides have been prepared adapting the slides
provided by the authors of [RG] and using several
presentations of this paper available on the internet (esp. by
Ofer Pasternak and Brian Chase)
Data Mining - 1

• Find interesting trends or patterns in large datasets
 – to guide decisions about future activities
 – ideally, with minimal user input
 – the identified patterns should give a data analyst useful and unexpected insights
 – can be explored further with other decision support tools (like data cube)
Data Mining - 2

• Related to
 – exploratory data analysis (Statistics)
 – Knowledge Discovery (KD)
 – Machine Learning

• Scalability is important and a new criterion
 – w.r.t. main memory and CPU

• Additional criteria
 – Noisy and incomplete data
 – Iterative process (improve reliability and reduce missing patterns with user inputs)
OLAP vs. Data Mining

- Both analyze and explore data
 - SQL queries (relational algebra)
 - OLAP (multidimensional model)
 - Data mining (most abstract analysis operations)

- Data mining has more flexibility
 - assume complex high level “queries”
 - few parameters are user-definable
 - specialized algorithms are needed
Four Main Steps in KD and DM (KDD)

• **Data Selection**
 – Identify target subset of data and attributes of interest

• **Data Cleaning**
 – Remove noise and outliers, unify units, create new fields, use denormalization if needed

• **Data Mining**
 – extract interesting patterns

• **Evaluation**
 – present the patterns to the end users in a suitable form, e.g. through visualization
Several DM/KD (Research) Problems

- Discovery of causal rules
- Learning of logical definitions
- Fitting of functions to data
- Clustering
- Classification
- Inferring functional dependencies from data
- Finding “usefulness” or “interestingness” of a rule

– See the citations in the Agarwal-Srikant paper
– Some discussed in [RG] Chapter 27
Related: Iceberg Queries

```
SELECT P.custid, P.item, SUM(P.qty)
FROM Purchases P
GROUP BY P.custid, P.item
HAVING SUM(P.qty) > 5
```

- Output is much smaller than the original relation or full query answer
- Computing the full answer and post-processing may not be a good idea
- Try to find efficient algorithms with full “recall” and high “precision”

ref. ”Computing Iceberg Queries Efficiently”
Fang et al.
VLDB 1998
Our Focus in this Lecture

• Frequent Itemset Counting
• Mining Association Rules
 – using frequent itemsets
 – Both from the Agarwal-Srikant paper

• Many of the “rule-discovery systems” can use the association rule mining ideas
Retailers can collect and store massive amounts of sales data

- transaction date and list of items

Association rules:

- e.g. 98% customers who purchase “tires” and “auto accessories” also get “automotive services” done
- Customers who buy mustard and ketchup also buy burgers
- Goal: find these rules from just transactional data (transaction id + list of items)
Applications

- Can be used for
 - marketing program and strategies
 - cross-marketing
 - catalog design
 - add-on sales
 - store layout
 - customer segmentation
Notations

• Items $I = \{i_1, i_2, ..., i_m\}$
• D : a set of transactions
• Each transaction $T \subseteq I$
 – has an identifier TID
• Association Rule
 – $X \rightarrow Y$
 – $X, Y \subseteq I$
 – $X \cap Y = \emptyset$
Confidence and Support

- Association rule $X \rightarrow Y$

- **Confidence** $c = \frac{|\text{Tr. with } X \text{ and } Y|}{|\text{Tr. with } |X||}$
 - $c\%$ of transactions in D that contain X also contain Y

- **Support** $s = \frac{|\text{Tr. with } X \text{ and } Y|}{|\text{all Tr.}|}$
 - $s\%$ of transactions in D contain X and Y.
Support Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Cereal</th>
<th>Beer</th>
<th>Bread</th>
<th>Bananas</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- Support(Cereal)
 - $4/8 = .5$
- Support(Cereal \to Milk)
 - $3/8 = .375$
Confidence Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Cereal</th>
<th>Beer</th>
<th>Bread</th>
<th>Bananas</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- **Confidence(Cereal → Milk)**
 - $3/4 = .75$
- **Confidence(Bananas → Bread)**
 - $1/3 = .33333...$
X → Y is not a Functional Dependency

For functional dependencies

• F.D. = two tuples with the same value of of X must have the same value of Y
 – X → Y => XZ → Y (concatenation)
 – X → Y, Y → Z => X → Z (transitivity)

For association rules

• X → A does not mean XY → A
 – May not have the minimum support
 – Assume one transaction {AX}

• X → A and A → Z do not mean X → Z
 – May not have the minimum confidence
 – Assume two transactions {XA}, {AZ}
Problem Definition

• Input
 – a set of transactions D
 • Can be in any form – a file, relational table, etc.
 – min support (minsup)
 – min confidence (minconf)

• Goal: generate all association rules that have
 – support \geq minsup and
 – confidence \geq minconf
Decomposition into two subproblems

1. Apriori and AprioriTID:
 - for finding “large” itemsets with support $\geq \text{minsup}$
 - all other itemsets are “small”

2. Then use another algorithm to find rules $X \rightarrow Y$ such that
 - Both itemsets $X \cup Y$ and X are large
 - $X \rightarrow Y$ has confidence $\geq \text{minconf}$

Paper focuses on subproblem 1
- if support is low, confidence may not say much
- subproblem 2 in full version
Basic Ideas - 1

• Q. Which itemset can possibly have larger support: ABCD or AB
 – i.e. when one is a subset of the other?

• Ans: AB
 – any subset of a large itemset must be large
 – So if AB is small, no need to investigate ABC, ABCD etc.
• Start with individual (singleton) items \{A\}, \{B\}, ...
• In subsequent passes, extend the “large itemsets” of the previous pass as “seed”
• Generate new potentially large itemsets (candidate itemsets)
• Then count their actual support from the data
• At the end of the pass, determine which of the candidate itemsets are actually large
 – becomes seed for the next pass
• Continue until no new large itemsets are found

• Benefit: candidate itemsets are generated using the previous pass, without looking at the transactions in the database
 – Much smaller number of candidate itemsets are generated
Apriori vs. AprioriTID

• Both follow the basic ideas in the previous slides

• AprioriTID has the additional property that the database is not used at all for counting the support of candidate itemsets after the first pass
 – An “encoding” of the itemsets used in the previous pass is employed
 – Size of the encoding becomes smaller in subsequent passes – saves reading efforts

• More later
Notations

- Assume the database is of the form \(<\text{TID}, i_1, i_2, \ldots>\) where items are stored in lexicographic order
- \text{TID} = identifier of the transaction
- Also works when the database is “normalized”: each database record is \(<\text{TID}, \text{item}>\) pair

<table>
<thead>
<tr>
<th>(k)-itemset</th>
<th>An itemset having (k) items.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_k)</td>
<td>Set of large (k)-itemsets (those with minimum support). Each member of this set has two fields: i) itemset and ii) support count.</td>
</tr>
<tr>
<td>(C_k)</td>
<td>Set of candidate (k)-itemsets (potentially large itemsets). Each member of this set has two fields: i) itemset and ii) support count.</td>
</tr>
<tr>
<td>(\overline{C}_k)</td>
<td>Set of candidate (k)-itemsets when the TIDs of the generating transactions are kept associated with the candidates.</td>
</tr>
</tbody>
</table>

ACTUAL

POTENTIAL

Used in both Apriori and AprioriTID

Used in AprioriTID
Algorithm Apriori

\[L_1 = \{\text{large 1-itemsets}\} \]

For \(k = 2; L_{k-1} \neq \emptyset; k++ \) do begin

\[C_k = \text{apriori-gen}(L_{k-1}); \]

forall transactions \(t \in D \) do begin

\[C_t = \text{subset}(C_k, t) \]

forall candidates \(c \in C_t \) do

\[c.text.count++; \]

end

end

\[L_k = \{ c \in C_k | c.text.count \geq \text{minsup}\} \]

end

\[\text{Answer} = \bigcup_k L_k; \]

Count individual item occurrences

Generate new k-itemsets candidates

Find the support of all the candidates

count = 0

increment count

Take only those with support \(\geq \text{minsup} \)
Apriori-Gen

- Takes as argument L_{k-1} (the set of all large k-1-itemsets)
- Returns a superset of the set of all large k-itemsets by augmenting L_{k-1}

Join step

- **Lk-1 △ Lk-1**
- p and q are two large (k-1)-itemsets identical in all k-2 first items.
- Join by adding the last item of q to p

Prune step

- **forall itemsets c \in C_k do**
 - **forall (k-1)-subsets s of c do**
 - if ($s \notin L_{k-1}$) then
 - delete c from C_k
- Check all the subsets, remove all candidate with some “small” subset
Apriori-Gen Example - 1

Step 1: Join (k = 4)

Assume numbers 1-5 correspond to individual items

L_3 C_4

• {1,2,3}
• {1,2,4}
• {1,3,4}
• {1,3,5}
• {2,3,4}
Step 1: Join (k = 4)

Assume numbers 1-5 correspond to individual items

L_3
- \{1,2,3\}
- \{1,2,4\}
- \{1,3,4\}
- \{1,3,5\}
- \{2,3,4\}

C_4
- \{1,2,3,4\}
- \{1,3,4,5\}
Apriori-Gen Example - 3

Step 2: Prune (k = 4)

- Remove itemsets that can’t have the required support because there is a subset in it which doesn’t have the level of support i.e. not in the previous pass (k-1)

\[L_3 \]
- \{1,2,3\}
- \{1,2,4\}
- \{1,3,4\}
- \{1,3,5\}
- \{2,3,4\}

\[C_4 \]
- \{1,2,3,4\}
- \{1,3,4,5\}

No \{1,4,5\} exists in \(L_3 \)
Rules out \{1, 3, 4, 5\}
Comparisons with previous algorithms (AIS, STEM)

L_{k-1} to C_k
- Read each transaction t
- Find itemsets p in L_{k-1} that are in t
- Extend p with large items in t and occur later in lexicographic order

L_3
- $\{1,2,3\}$
- $\{1,2,4\}$
- $\{1,3,4\}$
- $\{1,3,5\}$
- $\{2,3,4\}$

C_4
- $\{1,2,3,4\}$
- $\{1,2,3,5\}$
- $\{1,2,4,5\}$
- $\{1,3,4,5\}$
- $\{2,3,4,5\}$

$t = \{1, 2, 3, 4, 5\}$
all 1-5 large items (why?)

5 candidates compared to 2 (after pruning 1) in Apriori
Correctness of Apriori

Show that \(C_k \supseteq L_k \)

- Any subset of large itemset must also be large
- for each \(p \) in \(L_k \), it has a subset \(q \) in \(L_{k-1} \)
- We are extending those subsets \(q \) in Join with another subset \(q' \) of \(p \), which must also be large
 - equivalent to extending \(L_{k-1} \) with all items and removing those whose \((k-1) \) subsets are not in \(L_{k-1} \)
- Prune is not deleting anything from \(L_k \)

insert into \(C_k \)
select \(p.item_1, p.item_2, p.item_{k-1}, q.item_{k-1} \)
from \(L_{k-1} p, L_{k-1} q \)
where \(p.item_1 = q.item_1, \ldots, p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1} \)

forall itemsets \(c \in C_k \) do
 forall \((k-1)\)-subsets \(s \) of \(c \) do
 if \(s \notin L_{k-1} \) then
 delete \(c \) from \(C_k \)

Duke CS, Fall 2016
CompSci 516: Data Intensive Computing Systems
Problem with Apriori

- Every pass goes over the entire dataset

\[L_1 = \{ \text{large 1-itemsets} \} \]

\[
\text{For } (k = 2; L_{k-1} \neq \emptyset; k++) \text{ do begin}
\]

\[C_k = \text{apriori-gen}(L_{k-1}); \]

\[
\text{forall transactions } t \in D \text{ do begin}
\]

\[C_t = \text{subset}(C_k,t) \]

\[
\text{forall candidates } c \in C_t \text{ do}
\]

\[c.\text{count}++; \]

end

end

\[L_k = \{ c \in C_k | c.\text{count} \geq \text{minsup} \} \]

end

\[Answer = \bigcup_k L_k; \]

- Database of transactions is massive
 - Can be millions of transactions added an hour

- Scanning database is expensive
 - In later passes transactions are likely NOT to contain large itemsets
 - Don’t need to check those transactions

- Solutions
 - AprioriTID
 - Hybrid
 - Optional/not covered
Discovering Rules
(from the full version of the paper)

Naïve algorithm:

• For every large itemset \(p \)
 – Find all non-empty subsets of \(p \)
 – For every subset \(q \)
 • Produce rule \(q \rightarrow (p-q) \)
 • Accept if \(\text{support}(p) / \text{support}(q) \geq \text{minconf} \)
Checking the subsets

- For efficiency, generate subsets using recursive DFS
- If a subset q does not produce a rule, we do not need to check for subsets of q

Example
Given itemset: $ABCD$
If $ABC \rightarrow D$ does not have enough confidence then $AB \rightarrow CD$ does not hold

$\text{minconf} \geq \frac{\text{Confidence}(ABC \rightarrow D) = \text{Support}(ABCD)/\text{Support}(ABC)}{\geq \text{Confidence}(AB \rightarrow CD) = \text{Support}(ABCD)/\text{Support}(AB)}$
forall large itemsets l_k, $k \geq 2$ do

\[\text{genrules}(l_k, l_k) \]

procedure genrules (l_k: large k-itemset, a_m: large m-itemset)

$A = \{(m-1)$-itemset $a_{m-1} | a_{m-1} \subseteq a_m\};$

forall $a_{m-1} \in A$ do begin

\[\text{conf} = \frac{\text{support}(l_k)}{\text{support}(a_{m-1})} \]

if ($\text{conf} \geq \text{minconf}$) then begin

output the rule $a_{m-1} \Rightarrow (l_k - a_{m-1});$

if ($m - 1 > 1$) then

call genrules(l_k, a_{m-1});

end

end

Check all the large itemsets

Check all the subsets

Check confidence of new rule

Output the rule

Continue the depth-first search over the subsets.

If not enough confidence, the DFS branch cuts here
More Optimizations

Example:

If $AB \rightarrow CD$ holds

- $\text{conf} = \text{support}(ABCD)/\text{support}(AB) \geq \text{minconf}$

then so do $ABC \rightarrow D$ and $ABD \rightarrow C$

- $\text{conf} = \text{support}(ABCD)/\text{support}(ABC)$
- $\text{conf} = \text{support}(ABCD)/\text{support}(ABD)$

In general,

- If $(p-q) \rightarrow q$ holds than all the rules $(p-q') \rightarrow q'$ must hold
 - where $q' \subseteq q$ and is non-empty

Idea

- Start with 1-item consequent and generate larger consequents
- If a consequent does not hold, do not look for bigger ones
- The candidate set will be a subset of the simple algorithm
Optional Additional Slides
AprioriTid

• Also uses Apriori-Gen
• But scans the database D only once.
• Builds a storage set C^*_K
 – “bar” in the paper instead of *
• Members of C^*_K are of the form $< \text{TID}, \{X_k\} >$
 – each X_k is a potentially large k-itemset present in the transaction TID
 – For $k=1$, C^*_1 is the database D
 – items i as $\{i\}$
• If a transaction does not have a candidate k-itemset, C^*_K will not contain anything for that TID
• C^*_K may be smaller than #transactions, esp. for large values of k
 – For smaller values of k, it may be large

AprioriTID is overview only details and correctness discussed in the paper

See the examples in the following slides and then see this slide for an overview
Algorithm AprioriTid

\[L_1 = \{\text{large 1-itemsets}\} \]
\[C_1^\wedge = \text{database D}; \]
For (\(k = 2; \ L_{k-1} \neq \emptyset; \ k++ \)) do begin
\[C_k = \text{apriori-gen}(L_{k-1}); \]
\[C_k^\wedge = \emptyset; \]
for all entries \(t \in C_{k-1}^\wedge \) do begin
\[C_t = \{c \in C_k | (c - c[k] \in t.\text{set-of-items} \]
\[\wedge (c - c[k-1]) \in t.\text{set-of-items} \}; \]
for all candidates \(c \in C_t \) do
\[c.\text{count}++; \]
if \((C_t \neq \emptyset) \) then \(C_k^\wedge +=< t.TID, C_t, > \);
end
end
\[L_k = \{ c \in C_k | c.\text{count} \geq \text{minsup} \} \]
end

Answer = \(\bigcup_k L_k \)

\begin{itemize}
 \item Count item occurrences
 \item The storage set is initialized with the database
 \item Generate new k-itemsets candidates
 \item Build a new storage set
 \item Determine candidate itemsets which are contained in transaction TID
 \item Find the support of all the candidates
 \item Remove empty entries
 \item Take only those with support over \text{minsup}
\end{itemize}

See the examples in the following slides and then come back to the algorithm.
AprioriTid Example

Database

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

C_1

<table>
<thead>
<tr>
<th>TID</th>
<th>Set-of-Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{ {1}, {3}, {4} }</td>
</tr>
<tr>
<td>200</td>
<td>{ {2}, {3}, {5} }</td>
</tr>
<tr>
<td>300</td>
<td>{ {1}, {2}, {3}, {5} }</td>
</tr>
<tr>
<td>400</td>
<td>{ {2}, {5} }</td>
</tr>
</tbody>
</table>

L_1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

Min support = 2
AprioriTid Example

Min support = 2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

Now we need to compute the supports of C_2
without looking at the database D
from C^*_1
AprioriTid Example

Min support = 2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td></td>
</tr>
<tr>
<td>{1 5}</td>
<td></td>
</tr>
<tr>
<td>{2 3}</td>
<td></td>
</tr>
<tr>
<td>{2 5}</td>
<td></td>
</tr>
<tr>
<td>{3 5}</td>
<td></td>
</tr>
</tbody>
</table>

C_2

<table>
<thead>
<tr>
<th>TID</th>
<th>Set-of-Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{ {1}, {3}, {4}}</td>
</tr>
<tr>
<td>200</td>
<td>{ {2}, {3}, {5}}</td>
</tr>
<tr>
<td>300</td>
<td>{ {1}, {2}, {3}, {5}}</td>
</tr>
<tr>
<td>400</td>
<td>{ {2}, {5}}</td>
</tr>
</tbody>
</table>

- \(C_{100} = \{1, 3\}\)
- \(C_{200} = \{2, 3, 2, 5, 3, 5\}\)
- \(C_{300} = \{1, 2, 1, 3, 1, 5, 2, 3, 2, 5, 3, 5\}\)
- \(C_{400} = \{2, 5\}\)

Only 300 has both \{1\} and \{2\}

Support = 1

```python
forall entries \(t \in C_{k-1}\) do begin
  // determine candidate itemsets in \(C_k\) contained in the transaction with identifier \(t.TID\)
  \(C_t = \{c \in C_k \mid (c - c[k]) \in t.set-of-itemsets \land (c - c[k-1]) \in t.set-of-itemsets\}\);
  forall candidates \(c \in C_t\) do
    c.count++;
    if \((C_t \neq \emptyset)\) then \(C_k += <t.TID, C_t>\);
end
```
AprioriTid Example

Min support = 2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5}</td>
<td></td>
</tr>
<tr>
<td>{2 3}</td>
<td></td>
</tr>
<tr>
<td>{2 5}</td>
<td></td>
</tr>
<tr>
<td>{3 5}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TID</th>
<th>Set-of-Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{ {1}, {3}, {4} }</td>
</tr>
<tr>
<td>200</td>
<td>{ {2}, {3}, {5} }</td>
</tr>
<tr>
<td>300</td>
<td>{ {1}, {2}, {3}, {5} }</td>
</tr>
<tr>
<td>400</td>
<td>{ {2}, {5} }</td>
</tr>
</tbody>
</table>

C\(_{100}\) = \{ {1, 3} \}\nC\(_{200}\) = \{ {2, 3}, {2, 5}, {3, 5} \}\nC\(_{300}\) = \{ {1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5} \}\nC\(_{400}\) = \{ {2, 5} \}\n
```java
forall entries \( t \in \overline{C}_{k-1} \) do begin
   // determine candidate itemsets in \( C_k \) contained
   // in the transaction with identifier \( t.TID \)
   \( C_t = \{ c \in C_k \mid (c - c[k]) \in t.set-of-itemsets \land \)
   \( (c - c[k-1]) \in t.set-of-itemsets \}; \)
   forall candidates \( c \in C_t \) do
      \( c.count++ \);
      if \( (C_t \neq \emptyset) \) then \( \overline{C}_k += \langle t.TID, C_t \rangle \); 
end
```
AprioriTid Example

Min support = 2

\[C_2 \]

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1, 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1, 5}</td>
<td>1</td>
</tr>
<tr>
<td>{2, 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2, 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3, 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\bar{C}_1 \]

<table>
<thead>
<tr>
<th>TID</th>
<th>Set-of-Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{ {1}, {3}, {4} }</td>
</tr>
<tr>
<td>200</td>
<td>{ {2}, {3}, {5} }</td>
</tr>
<tr>
<td>300</td>
<td>{ {1}, {2}, {3}, {5} }</td>
</tr>
<tr>
<td>400</td>
<td>{ {2}, {5} }</td>
</tr>
</tbody>
</table>

forall entries \(t \in \bar{C}_{k-1} \) do begin

// determine candidate itemsets in \(C_k \) contained
// in the transaction with identifier \(t \).TID
\(C_t = \{ c \in C_k | (c - c[k]) \in t.set-of-itemsets \land (c - c[k-1]) \in t.set-of-itemsets \} \);

forall candidates \(c \in C_t \) do

c.count++;

if (\(C_t \neq \emptyset \)) then \(\bar{C}_k \leftarrow \langle t.TID, C_t \rangle \);

end

\(C_{100} = \{\{1, 3\}\} \)
\(C_{200} = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\} \)
\(C_{300} = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}\} \)
\(C_{400} = \{\{2, 5\}\} \)
Min support = 2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5}</td>
<td>1</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C_2:

$C_{100} = \{1, 3\}$
$C_{200} = \{2, 3\}, \{2, 5\}, \{3, 5\}$
$C_{300} = \{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}$
$C_{400} = \{2, 5\}$

\overline{C}_2:

- 100: $\{1, 3\}$
- 200: $\{2, 3\}, \{2, 5\}, \{3, 5\}$
- 300: $\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}$
- 400: $\{2, 5\}$

forall entries $t \in \overline{C}_{k-1}$ do begin

// determine candidate itemsets in C_k contained in the transaction with identifier t.TID
$C_t = \{c \in C_k \mid (c - c[k]) \in t$.set-of-itemsets \land
$(c - c[k-1]) \in t$.set-of-itemsets$\}$;

forall candidates $c \in C_t$ do

c.count++;

if ($C_t \neq \emptyset$) then
 $\overline{C}_k \leftarrow <t$.TID, $C_t>$;
end

Duke CS, Fall 2016
CompSci 516: Data Intensive Computing Systems
AprioriTid Example

Min support = 2

C_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5}</td>
<td>1</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

L_2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

How L_2 looks (entries above threshold)

The supports are in place
Can compute L_2 from C_2
AprioriTid Example

Min support = 2

Next step

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2, 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2, 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3, 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

\[L_2\]

\[C_3\]

\[k = 3\]
AprioriTid Example

Min support = 2

Look for transactions containing \{2, 3\} and \{2, 5\}

Add \langle 200, \{2,3,5\} \rangle and \langle 300, \{2,3,5\} \rangle to \(C_3^*\)
AprioriTid Example

Min support = 2

C_3 has only two transactions (we started with 4)

L_3 has the largest itemset

C_4 is empty

Stop

Optional: read the correctness proof, buffer managements, data structure from the paper
Performance

• Support decreases => time increases

• AprioriTID is “almost” as good as Apriori, BUT Slower for larger problems
 – C^*_k does not fit in memory and increases with #transactions
Performance

• AprioriTid is effective in later passes
 – Scans C^*_k instead of the original dataset
 – becomes small compared to original dataset

• When fits in memory, AprioriTid is faster than Apriori
AprioriHybrid

- Use Apriori in initial passes
- Switch to AprioriTid when it can fit in memory
 - Switch happens at the end of the pass
 - Has some overhead to switch
- Still mostly better or as good as apriori
From Apriori Algorithm

Subset Function - 1

- Candidate itemsets in C_k are stored in a hash-tree (like a B-tree)
 - interior node = hash table
 - each bucket points to another node at the level below
 - leaf node = itemsets
 - recall that the itemsets are ordered
 - root at level 1 (top-most)
 - All nodes are initially leaves
 - When the number of itemsets in a leaf-node exceeds a threshold, convert it into an interior node

- To add an itemset c, start from the root and go down the tree until reach a leaf

Given a transaction t and a candidate set C_k, compute the candidates in C_k contained in t

$$L_1 = \{\text{large 1-itemsets}\}$$

For $(k = 2; L_{k-1} \neq \emptyset; k++)$ do begin

$$C_k = \text{apriori-gen}(L_{k-1})$$

forall transactions $t \in D$ do begin

$$C_t = \text{subset}(C_k, t)$$

forall candidates $c \in C_t$ do

$c.count++;$

end

end

$$L_k = \{c \in C_k | c.count \geq \text{minsup}\}$$

end

Answer = $\bigcup_k L_k$;
Subset Function - 2

• To find all candidates contained in a transaction t
 – if we are at a leaf
 • find which itemsets are contained in t
 • add references to them in the answer set
 – if we are at an interior node
 • we have reached it by hashing an item i
 • hash on each item that comes after i in t
 • repair
 – if we are at the root, hash on every item in t

\[
L_1 = \{\text{large } 1\text{-itemsets}\}
\]

For \((k = 2; L_{k-1} \neq \emptyset; k++)\) do begin
 \[C_k = \text{apriori-gen}(L_{k-1});\]
 forall transactions \(t \in D\) do begin
 \[C_t = \text{subset}(C_k, t)\]
 forall candidates \(c \in C_t\) do
 \(c.\text{count}++;\)
 end
 end

\[L_k = \{c \in C_k|c.\text{count} \geq \text{minsup}\}\]

end

\[\text{Answer} = \bigcup_k L_k;\]
Subset Function - 3

• Why does it work?

• For any itemset \(c \) in a transaction \(t \)

 – the first item of \(c \) must be in \(t \)

 – by hashing on each item in \(t \), we ensure that we only ignore itemsets that start with an item not in \(t \)

 – similarly for lower depths

 – since the itemset is ordered, if we reach by hashing on \(i \), we only need to consider items that occur after \(i \)

\[
L_1 = \{ \text{large 1-itemsets} \}
\]

For \((k = 2; L_{k-1} \neq \emptyset; k++)\) do begin

\[
C_k = \text{apriori-gen} (L_{k-1})
\]

forall transactions \(t \in D \) do begin

\[
C_t = \text{subset} (C_k, t)
\]

forall candidates \(c \in C_t \) do

\[
c.\text{count} ++;
\]

end

end

\[
L_k = \{ c \in C_k | c.\text{count} \geq \text{minsup} \}
\]

end

\[
\text{Answer} = \bigcup_k L_k;
\]