CompSci 101
 Introduction to Computer Science

score $=[10,8,10,9]$
Sep 21, 2017

Prof. Rodger

Assignment 4 out today, due Oct 3

- Transform 1 - PigLatin.

The angry bear climbed the tree.
e-thay angry-way ear-bay imbed-clay
e - thay ee.-tray
\rightarrow The angry bear climbed the tree.

- Transform 2 - Caesar Cipher encryption The angry bear climbed the tree.
Aol hunyf ilhy jsptilk aol ayll.
\rightarrow The angry bear climbed the tree.

Announcements

- Reading and RQ8 due next time
- Assignment 3 due tonight
- Assignment 4 out, due Oct. 3
- APT 3 is due on Tuesday
- APT Quiz 1 take Sunday-Wednesday 11:59pm - practice APT quiz available
- Today
- Breaking apart and putting back together.
- Thinking about solving assignments, apts

Getting help

- Consider a peer tutor - one hour of one on one help a week.
- Many take advantage of this
- contact peer tutoring center
- Are you getting too much help?
- After solving APT
- Can you solve again with a blank sheet of paper or blank file and no help?
- Are you using 7 step process to solve?

Are you Learning How to Debug?

- Do a little bit at a time, make sure it works!
- Print is your friend!
- Create variables!
- Isolate the problem
- Comment out sections until you can isolate where the problem is
- Python Tutor - trace
- Doesn't work with files but comment out file and create variable with sample input

Incremental $+:$ numbers and strings

- Wtht vwls cn y stll rd ths sntnc?
- Create a no-vowel version of word
- Examine each character, if it's not a vowel ...
- Pattern of building a string

```
```

def noVowels(word):

```
```

def noVowels(word):
ret = ""
ret = ""
for ch in word:
for ch in word:
if not isVowel(ch):
if not isVowel(ch):
ret = ret + ch
ret = ret + ch
return ret

```
```

 return ret
    ```
```

compscit01 fallti?

```
def vowelCount(word):
    value = 0
    for ch in word:
        if isVowel(ch):
            value = value + 1
    return value
```

- Alternative version of adding:

```
value += 1
```


Filtering data

- List of all the earthquakes
- FILTER - those magnitude 2.0 or greater
\rightarrow List of earthquakes 2.0 or greater
- FILTER - those earthquakes in Alaska
\rightarrow List of earthquakes from Alaska 2.0 or greater
- NOTE you still have a list

String Functions - What is output?

```
name = "VVDarth Vater Darth VaterVVV"
nm = name.strip("V")
phrase = "mississippi"
phrase = phrase.replace("ss","pp")
last = "Darth Vater or Darth Vater"
last = last.replace("a","o").replace("or","es")
b = "the end is near oh dear"
a = b.endswith('s')
```

compsci 101, fall17

Making Decisions in Python

 if condition1:Block of code to do if condition is true elif condition2:

Block of code to do if condition1 false, condition2 is true
else:
Block of code to do if other conditions false

- Can have many elifs, leave out elif, leave out else

Making Decisions tools

- Boolean values: True, False
- Boolean operators: and, or, not

| X | Y | X and Y | X or Y |
| :--- | :--- | :--- | :---: |
| True | True | True | True |
| True | False | False | True |
| False | True | False | True |
| False | False | False | False |

- Relational operators: $<,<=,>,>=$
- Equality operators: $==,!=$

Lists

- A list is a collection of objects scores $=[99,78,91,84]$
allAboutMe = ["Mo", 25, "934-1234"] club $=[$ Mo', 'Jo', 'Po', 'Flo', 'Bo']
- Lists are mutable - use [num] to change a value
- Lists are indexed starting at 0 , or -1 from the end
- Functions: max, min, len, sum
- Slice lists [:]
if letter $==$ ' a '
answer = True
elif letter == 'e' lif letter == 'i, if letter == answer = True if letter $==$ ' O^{\prime} answer = True
elif letter == 'u' answer = True
return answer
def isVowel2(letter): answer = False
if letter == ' a ': answer = True
if letter == 'e':
answer = True
if letter == 'i':
answer = True
if letter == 'o': answer = True
if letter == 'u':
answer $=$ True
return answer
bit.ly/101f17-0921-2

```
def isVowel4(letter):
        answer = False
        if letter == 'a':
            answer = True
        else:
            answer = False
        if letter == 'e':
        answer = True
    else:
        answer = False
        f letter == 'i':
            answer = True
        else:
            answer = False
    if letter == '0':
        answer = True
    else:
        answer = False
    if letter == 'u':
        answer = True
    else:
    answer = False
    return answer }1
```


List Examples

```
scores = [10, 8, 10, 9]
print scores
scores[2] = 5
print scores
print max(scores), len(scores)
print sum(scores)
print scores[1:]
print scores[1], scores[-1]
scores.append(4)
scores += [5]
print scores compsci 101,fall17
```

List before/after modification

score $=[10,8,10,9]$

score $[2]=5$

Design pattern of accumulation for item in something

- Summing to tally a count
value $+=1$
- Building a new string by concatenating
str $+=$ ch
- Building a new list by appending

1st.append(element)
OR
lst += [element]

More List Examples

- phrase = "earthquake, 1.3, 81 km SSW of Kobuk, Alaska"
- phrase.split(" "") vs phrase.split() vs phrase.split("a")
- phrase = "Duke will beat UNC"
- alist $=$ phrase.split()
- ' '.join(alist) vs '+'.join(alist) vs
"YES".join(alist)
- append vs $+=$ [item]

Processing List Items

- Process all the items in a list, one item at a time
- Format: for variable in list: process variable
- Example:

```
sum = 0
nums = [6, 7, 3, 1, 2]
for value in nums:
    sum = sum + value
print sum

\section*{Learn list functions}
```

nums = [6, 7, 3, 1, 2]
print sum(nums)

```

\section*{Problem: Sum up even numbers in list of numbers}
- Could do it similar to two slides back
- OR Build a list of the correct numbers, then sum

From APT 3 - TxMsg
http://www.cs.duke.edu/csed/pythonapt/txmsg.html
Problem Statement
Strange abbreviations are often used to write text messages on uncomfortable write text messages on uncomfortable
mobile devices. One particular strateg for encoding texts composed of alphabetic characters and spaces is the following:

- Spaces are maintained, and each word is encoded individually. A word is a consecutive string of alphabetic characters.
- If the word is composed only of vowels, it is written exactly as in the original message.
- If the word has at least one consonant, write only the consonants that do not have another consonant immediately before them. Do not write any vowels.
- The letters considered vowels in these rules are 'a', 'e', 'i', 'o' and 'u'. All other letters are considered consonants.

\section*{Examples}
1. "text message"
\(\square\) Do one by hand?
- Explain to partner?
- Identify Pythonic/program ming challenges?
3. "please please me"
2. "ps i love u"

Returns: "p i lv u"

Returns: "ps ps m"
4. "back to the ussr"

Returns "bc t ts"
5. "aeiou bcdfghjklmnpqrstvwxyz"

Returns: "aeiou b"

\section*{Write helper function transform}
- How?
- Use seven steps
- Work an example by hand

\section*{Debugging APTs: Going green}
- TxMsg APT: from ideas to code to green
- What are the main parts of solving this problem?
- Transform words in original string
- Abstract that away at first
- Finding words in original string
- How do we do this?
```

def getMessage(original):
ret = ""
ret = ret + " " + transform(word)
return ret \#initial space?
compsci 101, fall17

Transform word - Step 1: work small example by hand

- Word is "please"
- Letter is ' p ', YES
- answer is " p "
- Letter is ' l ', NO
- Letter is 'e', NO
- Letter is ' a ', NO
- Letter is ' s ', YES
- answer is "ps"
- Letter is 'e', NO

Step 2: Describe what you did

- Word is "please", create an empty answer
- Letter is ' p ', consonant, no letter before, YES
- Add 'p' to answer
- Letter is ' l ', consonant, letter before " p ", NO
- Letter is ' e ', vowel, letter before ' 1 ', NO
- Letter is ' a ', vowel, letter before ' e ', NO
- Letter is ' s ', consonant, letter before ' a ', YES
- Add 's' to answer
- Letter is 'e', vowel, letter before 's', NO
- Answer is "ps"

Step 3: Find Pattern and generalize

Need letter before, pick "a"
answer is empty
for each letter in word
If it is a consonant, and the letter before is a
vowel, then add the letter to the answer
This letter is now the letter before
return answer

Step 4 - Work another example

- Word is message
- Letter is ' m ', before is ' a ', add ' m ' to answer
- Letter is ' e ', before is ' m ', NO
- Letter is ' s ', before is ' 'e', add ' s ' to answer
- Letter is ' s ', before is ' s ', NO
- Letter is ' a ', before is ' s ', NO
- Letter is ' g ', before is ' a ', add ' g ' to answer
- Letter is 'e', before is ' g ', NO
- Answer is "msg"

WORKS!!

Step 5: Translate to Code

\# Letter before is "a" \# start with a vowel
\# answer is empty
\# for each letter in word

Step 5: Translate to Code (code)

\#If it is a consonant, and the letter before is a \#vowel, then add the letter to the answer
\#This letter is now the letter before
\# return answer

Will our program work for?

- STRING GET SHOULD GET
- green
- apple
- a
- aeiuo
- grrr

Why use helper function 'transform'?

- Structure of code is easier to reason about
- Harder to develop this way at the beginning
- Similar to accumulate loop, build on what we know
- We can debug pieces independently
- What if transform returns "" for every string?
- Can we test transform independently of getMessage? compsi 10, falli

