CompSci 101 Introduction to Computer Science

Oct 17, 2017
Prof. Rodger

Announcements

- Reading and RQ due next time
- Assignment 5 out today
- APT 4 due Thursday, APT 5 out partially
- Lab 6 this week
- Read APT Anagramfree and Assignment 5 before going to lab!
- Today:
- list comprehension - shortcut for building a list
- Sets - new way to organize data

Exam 1... on Gradescope

- Use YOURNETID@duke.edu for email

- Solutions posted - request regrades til Oct 24
- Ask for regrade on gradescope
- Try working problem you missed first
- Then look at solution
- Once you think you understand
- Get blank sheet of paper - try again
- Understand all solutions

APT MorseLikeCode

```
1. library = ["O ---",
    message = "......"]
    Returns: "SOS"
```

 The example from the problem statement.

Solving APT MorseLikeCode

- Put library in a different format?
- ["H -", "E .", "L -.", "О .."]

Solving problems APT MorseLikeCode

- Compare find vs index
- find with string - returns -1 when not found
- index with list - CRASHES if not there!
- You can’t say: pos = alist.index("...")
- Instead: if "..." in alist:
pos = alist.index("...")

MorseLikeCode cont

- Write helper function - for a code, determine the letter for that code using the library
- Send library in new format
def codeToSymbol(library, code)
return letter

Back to Lists ..

Build a list from another list

- Given a list of numbers, create a second list of every number squared.

```
nums = [8, 3, 5, 4, 1]
sqnums = []
for v in nums:
    sqnums.append(v*v)
print sqnums
```

[64, 9, 25, 16, 1]

List Comprehension Short cut way to build a list

- Take advantage of patterns, make a new list based on per element calculations of another list
- Format:
[<expression with variable> for <variable> in <old list>]
- Example:
nums $=[8,3,5,4,1]$
sqnums $=\left[\mathrm{v*} \mathrm{v}\right.$ for v in hums] ${ }^{14}$

Examples of List Comprehensions bit.ly/101f17-1017-1

```
nums = [4, 3, 8]
x = [v for v in nums]
x = [2 for v in nums]
x = sum([v*2 for v in nums])
x = [v+5 for v in nums][1]
x = [ nums[len(nums)-i -1] for i
        in range(len(nums)) ]

These result in the same list!
```

nums = [8, 3, 5, 4, 1]

```
1) sqnums = []
for \(v\) in mums:
sqnums.append(v*v)
2) sqnums \(=\left[v^{*} v\right.\) for \(v\) in numb \(]\)
cps 101 fall2017
15

\section*{Creating a list with just the even numbers}
```

nums = [8, 3, 5, 4, 1]
evennums = []
for v in nums:
if v % 2 == 0:
evennums.append(v)
print evennums
[8, 4]

List Comprehension with Filtering

- Create list and use "if" to filter out elements to the list
- Format:
- [<expression with variable> for <variable> in <old list> if $<$ filter with variable>]
- Example: nums $=[8,3,5,4,1]$ evennums =
[v for v in nums if $v \% 2==0$] cps 101 fall2017

More on List Comprehensions www.bit.ly/101f17-1017-2

names = ["Bo", "Moe", "Mary", "Aaron", "Joe"]

- What is the list for the following:

1) [w for w in names if w.endswith("e")]
2) $[w$ for w in names if w.lower() $[0]>$ ' c ']
3) $[j+1$ for j in range (20) if $(j \% 3)==0]$
4) $[i * 2$ for i in $[j+1$ for j in range(20)

$$
\text { if }(j \% 3)==0] \text { if } i * i>19]
$$

More on List Comprehensions bit.ly/101f17-1017-3

- Problem: Given a list of strings, return the longest string. If there are more than one of that length, return the first such one.
fruit = ['kiwi', 'plum', 'orange', 'lemon', 'banana']
Use a list comprehension for this problem

Richard Stallman

- MacArthur Fellowship (Genious grant)
- ACM Grace Murray Hopper award
- Started GNU - Free Software
 Foundation (1983)
- GNU Compiler Collection - GNU Emacs

Python Sets

- Set - unordered collection of distinct items
- Unordered - can look at them one at a time, but cannot count on any order
- Distinct - one copy of each
- Operations on sets:
- Modify: add, clear, remove
- Create a new set: difference(-), intersection(\&), union (|), symmetric_difference(^)
- Boolean: issubset <=, issuperset >=
- Can convert list to set, set to list
- Great to get rid of dupplicates in a list

List vs Set

- List

- Ordered, $3^{\text {rd }}$ item, can have duplicates

- Set
- No duplicates, no ordering
- Example: y $=\operatorname{set}(x)$
- Both
- Add, remove elements

- Iterate over all elements

Summary (from wikibooks)

- set1 $=$ set()
- set1.add("cat")
- set1.update(["dog"
- set1.remove("cat")
- print set1
- for item in set1:
print item
- print "Item count:", len(set1)
- isempty $=\operatorname{len}($ set1 $)==0$
- set1 = set(["cat", "dog"])
- $\operatorname{set} 3=$ set1 \& set 2
- set4 $=$ set1 | set2
- set5 $=$ set1 - set3
- set6 $=$ set1 \wedge set2
- issubset $=$ set1 <= set2
- issuperset = set1 >= set2
- set7 = set1.copy()
- set8.clear()
\# A new empty set
\# Add a single member
\# Add several members
\# Remove a member - error if not there
\# Iteration or "for each element"
\# Length, size, item count
\# Test for emptiness
\# Initialize set from a list
\# Intersection
\# Union
\# Set difference
\# Symmetric difference (elements in either set but not both)
\# Subset test
\# Superset test
\# A shallow copy (copies the set, not
\# clear, elements)

Creating and changing a set

```
colorList = ['red', 'blue', 'red', 'red', 'green']
colorSet = set(colorList)
smallList = list(colorSet)
colorSet.clear()
colorSet.add("yellow")
colorSet.add("red")
colorSet.add("blue")
colorSet.add("yellow")
colorSet.add("purple")
colorSet.remove("yellow")
```

What is the value of smallList and colorSet after this code executes?

Set Operations

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print dukeColors.union(UScolors)
print dukeColors | UScolors
print dukeColors.intersection(UScolors)
print dukeColors & UScolors
```


Set Operations

```
UScolors = set(['red', 'white', 'blue'])
```

UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
dukeColors = set(['blue', 'white', 'black'])
print dukeColors.difference(UScolors)
print dukeColors.difference(UScolors)
print dukeColors - UScolors
print dukeColors - UScolors
print UScolors - dukeColors

```
print UScolors - dukeColors
```


Set Operations

```
UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print dukeColors ^ UScolors
print UScolors ^ dukeColors
```


Set Examples (cont)

lista = ['apple', 'pear', 'fig', 'orange', 'strawberry']
listb $=$ ['pear', 'lemon', 'grapefruit', 'orange']
listc $=[\mathrm{x}$ for x in lista if x in listb $]$
listd $=\operatorname{list}($ set(lista) $\mid \operatorname{set}($ listb $))$

Assignment 5 - Hangman

- Guess a word given the number of letters.
- Guess a letter
- see if it is in the word and where.
- Demo
- Will start in lab
words = ["creation","sentence","reaction","sneak","star","rats","snake"]
Returns: 4

```
"star" "rats"
-> both have letters: a r t s
"snake" "sneak"
"creation" "reaction"
"sentence"
```

