Announcements (Thu. Sep. 14)

• Homework #1 due next Tuesday (11:59pm)
• Course project description posted
 • Read it!
 • “Mixer” in a week and a half
 • Milestone #1 right after fall break
 • Teamwork required: 5 people per team on average
Motivation

• Why is UserGroup \((uid, uname, gid)\) a bad design?
 • It has **redundancy**—user name is recorded multiple times, once for each group that a user belongs to
 • Leads to **update, insertion, deletion anomalies**

• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • **Dependencies, decompositions, and normal forms**
Functional dependencies

• A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y
FD examples

Address (street_address, city, state, zip)

• street_address, city, state → zip
• zip → city, state
• zip, state → zip?
 • This is a trivial FD
 • Trivial FD: LHS ⊇ RHS
• zip → state, zip?
 • This is non-trivial, but not completely non-trivial
 • Completely non-trivial FD: LHS ∩ RHS = ∅
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

- Is K a key of R?
 - What are all the keys of R?
Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots \}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)

• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added
A more complex example

UserJoinsGroup \((uid, \text{uname}, \text{twitterid}, \text{gid}, \text{fromDate})\)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

- \(uid \rightarrow \text{uname}, \text{twitterid}\)
- \(\text{twitterid} \rightarrow uid\)
- \(uid, \text{gid} \rightarrow \text{fromDate}\)

Not a good design, and we will see why shortly
Example of computing closure

- \{gid, twitterid\}^+ = ?
- twitterid → uid
 - Add uid
 - Closure grows to \{gid, twitterid, uid\}
- uid → uname, twitterid
 - Add uname, twitterid
 - Closure grows to \{gid, twitterid, uid, uname\}
- uid, gid → fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Rules derived from axioms
 • Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 • Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• uid → uname, twitterid

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Decomposition

- Eliminates redundancy
- To get back to the original relation: ☑
Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)
Bad decomposition

- Association between `gid` and `fromDate` is lost
- Join returns more rows than the original relation
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

No way to tell which is the original relation
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in Boyce-Codd Normal Form if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key → other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)
 ➕ Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

• Repeat until all relations are in BCNF
BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid)

uid → uname, twitterid
twitterid → uid

Member (uid, gid, fromDate)

uid, gid → fromDate

 uid → uname, twitterid
twitterid → uid

BCNF
Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

uid → uname, twitterid
twitterid → uid
uid, gid → fromDate
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

• Anything we project always comes back in the join:
 $$R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the original relation:
 $$R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Proof will make use of the fact that $X \rightarrow Y$
Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s
BCNF = no redundancy?

• **User** (*uid, gid, place*)
 • A user can belong to multiple groups
 • A user can register places she’s visited
 • Groups and places have nothing to do with other
 • FD’s?

• BCNF?

• Redundancies?

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multivalued dependencies

• A multivalued dependency (MVD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)

• \(X \rightarrow Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two rows that are also in \(R \)

\[\begin{array}{ccc}
X & Y & Z \\
\hline
a & b_1 & c_1 \\
a & b_2 & c_2 \\
a & b_2 & c_1 \\
a & b_1 & c_2 \\
\ldots & \ldots & \ldots \\
\end{array}\]
MVD examples

User \((uid, gid, place)\)
- \(uid \rightarrow gid\)
- \(uid \rightarrow place\)
 - Intuition: given \(uid, gid\) and \(place\) are “independent”
- \(uid, gid \rightarrow place\)
 - Trivial: \(LHS \cup RHS = \text{all attributes of } R\)
- \(uid, gid \rightarrow uid\)
 - Trivial: \(LHS \supseteq RHS\)
Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity
• MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow \text{attrs}(R) - X - Y$
• MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
• MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
• Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$ \hspace{1cm} \text{Try proving things using these!}\n• Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Have: $A \rightarrow B \quad b_1 = b_2$

$B \rightarrow C \quad c_1 = c_2$

Need: $c_1 = c_2$

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities.
Counterexample by chase

In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

Have:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Need:

$b_1 = b_2 \not= \checkmark$

Counterexample!
4NF

• A relation R is in **Fourth Normal Form (4NF)** if
 • For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 • That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

• 4NF is stronger than BCNF
 • Because every FD is also a MVD
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place)
4NF violation: uid → gid

Member (uid, gid)
4NF

Visited (uid, place)
4NF
Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic