SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2017
Announcements (Tue., Oct. 3)

• Homework #2 due tonight
 • Deadline extended to Thursday for Problem 6 (Gradiance) only

• Midterm in class Thursday
 • Open-book, open-notes
 • Same format as sample midterm
 • Sample solution also posted in Sakai

• Project Milestone #1 due next Thursday
WHAT IS IT?

RECURSION

http://xkcdsw.com/1105
A motivating example

Parent (*parent, child*)

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
</tbody>
</table>

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

• SQL2 had no recursion
 • You can find Bart’s parents, grandparents, great grandparents, etc.

    ```sql
    SELECT pl.parent AS grandparent
    FROM Parent pl, Parent p2
    WHERE pl.child = p2.parent
    AND p2.child = 'Bart';
    ```
 • But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
 • `WITH` clause
 • Implemented in PostgreSQL (`common table expressions`)
Ancestor query in SQL3

WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1,
Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
Fixed point of a function

• If \(f : T \rightarrow T \) is a function from a type \(T \) to itself, a **fixed point** of \(f \) is a value \(x \) such that \(f(x) = x \)

• Example: What is the fixed point of \(f(x) = x/2 \)?
 - 0, because \(f(0) = 0/2 = 0 \)

• To compute a fixed point of \(f \)
 • Start with a “seed”: \(x \leftarrow x_0 \)
 • Compute \(f(x) \)
 - If \(f(x) = x \), stop; \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \); repeat

• Example: compute the fixed point of \(f(x) = x/2 \)
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... → 0

† Doesn’t always work, but happens to work for us!
Fixed point of a query

• A query q is just a function that maps an input table to an output table, so a \textbf{fixed point} of q is a table T such that $q(T) = T$

• To compute fixed point of q
 • Start with an empty table: $T \leftarrow \emptyset$
 • Evaluate q over T
 • If the result is identical to T, stop; T is a fixed point
 • Otherwise, let T be the new result; repeat

\(\text{Starting from } \emptyset \text{ produces the unique minimal fixed point (assuming } q \text{ is monotone)}\)
Finding ancestors

- **WITH RECURSIVE**

 \[
 \text{Ancestor}(\text{anc}, \text{desc}) \quad \text{AS} \\
 ((\text{SELECT parent, child FROM Parent}) \\
 \text{UNION} \\
 (\text{SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.desc = a2.anc}))
 \]

- Think of the definition as \(\text{Ancestor} = q(\text{Ancestor}) \)
Intuition behind fixed-point iteration

• Initially, we know nothing about ancestor-descendent relationships
• In the first step, we deduce that parents and children form ancestor-descendent relationships
• In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
• We stop when no new facts can be proven
Linear recursion

• With linear recursion, a recursive definition can make only one reference to itself
• Non-linear
 • WITH RECURSIVE Ancestor(anc, desc) AS ((SELECT parent, child FROM Parent) UNION (SELECT al.anc, a2.desc FROM Ancestor al, Ancestor a2 WHERE al.desc = a2.anc))
• Linear
 • WITH RECURSIVE Ancestor(anc, desc) AS ((SELECT parent, child FROM Parent) UNION (SELECT anc, child FROM Ancestor, Parent WHERE desc = parent))
Linear vs. non-linear recursion

• Linear recursion is easier to implement
 • For linear recursion, just keep joining newly generated Ancestor rows with Parent
 • For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but perform more work
 • Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 • Linear recursion takes 4 steps
 • Non-linear recursion takes 3 steps
 • More work: e.g., $a \rightarrow d$ has two different derivations
Mutual recursion example

• Table *Natural* \((n)\) contains 1, 2, ..., 100
• Which numbers are even/odd?
 • An odd number plus 1 is an even number
 • An even number plus 1 is an odd number
 • 1 is an odd number

WITH RECURSIVE *Even*\((n)\) AS
 (SELECT \(n\) FROM *Natural*
 WHERE \(n\) = ANY(SELECT \(n+1\) FROM *Odd*)),

RECURSIVE *Odd*\((n)\) AS
 ((SELECT \(n\) FROM *Natural* WHERE \(n\) = 1)
 UNION
 (SELECT \(n\) FROM *Natural*
 WHERE \(n\) = ANY(SELECT \(n+1\) FROM *Even*))
)
Semantics of WITH

- WITH RECURSIVE \(R_1 \) AS \(Q_1 \), ..., RECURSIVE \(R_n \) AS \(Q_n \)

\[Q; \]

- \(Q \) and \(Q_1, ..., Q_n \) may refer to \(R_1, ..., R_n \)

- Semantics

1. \(R_1 \leftarrow \emptyset \), ..., \(R_n \leftarrow \emptyset \)
2. Evaluate \(Q_1, ..., Q_n \) using the current contents of \(R_1, ..., R_n \):
 \[R_1^{new} \leftarrow Q_1, ..., R_n^{new} \leftarrow Q_n \]
3. If \(R_i^{new} \neq R_i \) for some \(i \)
 3.1. \(R_1 \leftarrow R_1^{new}, ..., R_n \leftarrow R_n^{new} \)
 3.2. Go to 2.
4. Compute \(Q \) using the current contents of \(R_1, ... R_n \) and output the result
Computing mutual recursion

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),

RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even))))

• Even = Ø, Odd = Ø
• Even = Ø, Odd = {1}
• Even = {2}, Odd = {1}
• Even = {2}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3, 5}
• …
Fixed points are not unique

But if \(q \) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset \).

- Thus the unique minimal fixed point is the “natural” answer.
Mixing negation with recursion

• If q is non-monotone
 • The fixed-point iteration may flip-flop and never converge
 • There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

• Example: popular users ($\text{pop} \geq 0.8$) join either Jessica’s Circle or Tommy’s
 • Those not in Jessica’s Circle should be in Tom’s
 • Those not in Tom’s Circle should be in Jessica’s
 • WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE $\text{pop} \geq 0.8$
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),
 RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE $\text{pop} \geq 0.8$
 AND uid NOT IN (SELECT uid FROM TommyCircle))
Fixed-point iter may not converge

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

TommyCircle JessicaCircle

TommyCircle JessicaCircle
Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

TommyCircle JessicaCircle

```sql
WITH RECURSIVE TommyCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
```

TommyCircle JessicaCircle

```sql
WITH RECURSIVE TommyCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
  (SELECT uid FROM User WHERE pop >= 0.8
   AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
```
Legal mix of negation and recursion

• Construct a **dependency graph**
 • One node for each table defined in `WITH`
 • A directed edge $R \rightarrow S$ if R is defined in terms of S
 • Label the directed edge “−” if the query defining R is not monotone with respect to S

• Legal SQL3 recursion: no cycle with a “−” edge
 • Called **stratified negation**

• Bad mix: a cycle with at least one edge labeled “−”
Stratified negation example

• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),

Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;
Evaluating stratified negation

• The **stratum** of a node R is the maximum number of “—” edges on any path from R in the dependency graph
 • Ancestor: stratum 0
 • Person: stratum 0
 • NoCommonAnc: stratum 1

• Evaluation strategy
 • Compute tables lowest-stratum first
 • For each stratum, use fixed-point iteration on all nodes in that stratum
 • Stratum 0: Ancestor and Person
 • Stratum 1: NoCommonAnc

☞ Intuitively, there is no negation within each stratum
Summary

• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation): unique minimal fixed point
• Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
• Mixing negation and recursion is tricky
 • Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 • Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)