
COMPSCI330 Design and Analysis of Algorithms

Assignment 1

Due Date: Wednesday, September 13, 2017

Guidelines

• Describing Algorithms If you are asked to provide an algorithm, you should clearly define
each step of the procedure, establish its correctness, and then analyze its overall running
time. There is no need to write pseudo-code; an unambiguous description of your algorithm
in plain text will suffice. If the running time of your algorithm is worse than the suggested
running time, you might receive partial credits.

• Typesetting and Submission Please submit each problem as an individual pdf file for the
correct problem on Sakai. LATEX is preferred, but answers typed with other software and
converted to pdf is also accepted. Please make sure you submit to the correct problem, and
your file can be opened by standard pdf reader. Handwritten answers or pdf files that
cannot be opened will not be graded.

• Timing Please start early. The problems are difficult and they can take hours to solve. The
time you spend on finding the proof can be much longer than the time to write. If you submit
within one week of the deadline you will get half credit. Any submission after that will not
receive any credit.

• Collaboration Policy Please check this page for the collaboration policy. You are not
allowed to discuss homework problems in groups of more than 3 students. Failure to adhere
to these guidelines will be promptly reported to the relevant authority without
exception.

1

http://www.cs.duke.edu/courses/fall17/compsci330/honesty.html


Problem 1 (Recursions). Please solve the following recursions (write the answer in asymptotic
notations T (n) = Θ(f(n))).

If you decide to use the recursion tree method, you do not need to draw the tree. Just describe
what the tree looks like in the second layer (e.g. there are a subproblems each with size n/b), bound
the amount of work in each layer, and take the sum over all layers. You do not need to write the
induction proof if you are using the recursion tree method.

(a) (10 points)

T (n) = T (
n

2
) + 2T (

n

4
) + n2.

(b) (10 points)
T (n) = n1/3T (n2/3) + n.

(Note: You cannot use Master Theorem here because n1/3, n2/3 are not constants.)

Problem 2 (Binary Search). Binary search is a classical algorithm. Given an array A[1..n] sorted
in ascending order, binary search can find whether an element b is in the array A. The algorithm
works as follows:

binary_search(A[1..n], b)

If n <= 2 then check whether b is in A by looking through all elements.

Let k = n/2

Partition A into B, C where B contains A[1..k-1], and C contains A[k+1..n]

If A[k] == b then b is in array A

If A[k] > b then call binary_search(B, b)

If A[k] < b then call binary_search(C, b)

(Note: you can also describe this algorithm as: When length of A is at least 3, compare b
against the middle element in A, if b is larger then search in the right half of A, if b is smaller then
search in the left half of A.)

(a) (8 points) Analyze the running time of the binary search algorithm.
(b) (12 points) Using similar ideas, you are going to solve a related problem. In this problem

you are given an array A[1..n] that is first decreasing and then increasing. More precisely, there is
a coordinate 1 ≤ p ≤ n such that for all i < p, A[i] > A[i + 1], and for all i ≥ p, A[i] < A[i + 1].
Your goal is to find the smallest element in this array. Please design an algorithm that has the
same asymptotic running time as binary search.

Problem 3 (Garden Decorations). (20 points) Alice is going to decorate her garden using L shaped
tiles. Her garden has a square shape. The size of the garden is n × n, where n is a power of 2
(n = 2k for some integer k ≥ 1). The tiles she is going to use are L shaped with 3 1×1 squares (see
Figure 1). She insists that all the tiles needs to be aligned with the four sides of the garden, although
they can be rotated by multiples of 90 degrees. There is a tree in her garden at location (x, y).
The tiles cannot overlap with each other or the tree. Now you are asked to design an algorithm
that outputs a way to put the tiles (see Figure for an example where n = 4, x = 2, y = 2). (Of
course, your algorithm does not need to draw the picture, it just needs to describe where to place
the tiles.)

2



Figure 1: The tile and a sample garden

3


