Lecture1: Asymptotic Notations, Euclid's Algorithm

Scriber: Xingyu Chen

September 2017

1 Asymptotic Notation

The Asymptotic Notation is to roughly measure the running time or memory for algorithm. So we will only keep the most weighted term. E.g. In Asymptotic Notation, $3 n^{2}+2 n \approx n^{2} \not \approx 2^{n}$.

1.1 Definition

Definition 1. $f(n)=O(g(n))$, if there is constants $C>0, n_{0}>0$ such that for all $n \geq n_{0}, f(n) \leq C \cdot g(n)$

Definition 2. $f(n)=\Omega(g(n))$, if there is constants $C>0, n_{0}>0$ such that for all $n \geq n_{0}, f(n) \geq C \cdot g(n)$

Definition 3. $f(n)=\Theta(g(n))$, if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
Definition 4. $f(n)=o(g(n))$, if $g(n) \neq O(f(n))$. In other words, $f(n)$ becomes insignificant relative to $g(n)$ as n approaches infinity, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$

Definition 5. $f(n)=\omega(g(n))$, if $f(n) \neq O(g(n))$. In other words, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

1.2 Example

(a) $3 n^{2}+2 n=O\left(n^{2}\right)$

Proof.

$$
3 n^{2}+2 n \leq 3 n^{2}+2 n^{2}=5 n^{2}
$$

In the definition, we can choose $C=5, n_{0}=1$. From there we obtain

$$
3 n^{2}+2 n \leq C \cdot n^{2}
$$

So $3 n^{2}+2 n=O\left(n^{2}\right)$
(b) $n^{2} \neq O(n),\left(n^{2}=\omega(n)\right)$

Proof. Use contradiction to prove, assume $n^{2}=O(n)$, there is $C>0, n_{0}>0$ s.t. when $n \geq n_{0}, n^{2} \leq C \cdot n$.
Pick $n>\max \left\{n_{0}, C\right\}$. Then we have $n^{2}=n \cdot n>C \cdot n$. Contradiction! Therefore $n^{2} \neq O(n)$

There's a useful inequality useful in asymptotic notation
Remark 1.

$$
\log n<\sqrt{n}<n<n \log n<n^{2}<2^{n}<3^{n}<n!
$$

2 The Importance of Asymptotic Notation

For this section, let's consider a well-known sorting algorithm Bubble Sort to take a close look at the usage and importance of asymptotic notation.

2.1 Algorithm

Bubble Sort is a sort algorithm which compares each element to its neighbor and swap if not in order. The pseudocode is as below:

```
for i = n downto 1
    for j = 1 to i-1
        if a[j]>a[j+1] then swap
```


2.2 Analysis of running time

Each round, the inner loop will run $i-1$ times in each outer loop round while i goes from n to 1 . So

$$
T=(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2}
$$

2.3 Analysis of running time II

Now we consider a problem that if there is an algorithm that calls Bubble Sort on an array of size $1,2,3 \ldots, n$. What can we say about the running time?
Of course there are still ways to calculate the exact expression for running times as below:

$$
\begin{aligned}
T & =\frac{1 \cdot 0}{2}+\frac{2 \cdot 1}{2}+\frac{3 \cdot 2}{2}+\ldots+\frac{n \cdot(n-1)}{2} \\
& =\frac{2 \cdot 1 \cdot 0-1 \cdot 0 \cdot-1}{6}+\frac{3 \cdot 2 \cdot 1-2 \cdot 1 \cdot 0}{6}+\frac{4 \cdot 3 \cdot 2-3 \cdot 2 \cdot 1}{6}+\ldots+\frac{(n+1) \cdot n \cdot(n-1)-n \cdot(n-1) \cdot(n-2)}{6} \\
& =\frac{(n+1) n(n-1)}{6}
\end{aligned}
$$

However, there's not always such a clever way to obtain an accurate polynomial. By using asymptotic notation, we can obtain a bound for running time more easily and for more occasions.

Claim 1. $T=\Theta\left(n^{3}\right)$
Proof.

$$
T=\sum_{i=1}^{n} \frac{i(i-1)}{2} \leq n \cdot \frac{n(n-1)}{2}=O\left(n^{3}\right)
$$

On the other hand,

$$
T=\sum_{i=1}^{n} \frac{i(i-1)}{2}>\sum_{i=\frac{n}{2}+1}^{n} \frac{i(i-1)}{2} \geq \frac{n}{2} \cdot \frac{\left(\frac{n}{2}\right)^{2}}{2}=\frac{n^{3}}{16}=\Omega\left(n^{3}\right)
$$

In conclusion, $T(n)=\Theta\left(n^{3}\right)$

3 Euclid's Algorithm

The Euclid's Algorithm aims to compute greatest common divisor (g.c.d) of 2 integers. For example,

$$
\operatorname{gcd}(15,9)=3
$$

3.1 Algorithm

```
Algorithm 1 Euclid's Algorithm
    if \(b==0\) then
        return a
    else
        return \(\operatorname{gcd}(b, a \bmod b)\)
```

Example Run:

$$
\operatorname{gcd}(15,9) \rightarrow \operatorname{gcd}(9,6) \rightarrow \operatorname{gcd}(6,3) \rightarrow \operatorname{gcd}(3,0) \rightarrow 3
$$

3.2 Proof of Correctness

We use induction to prove.
Base Case:
if $b=0, \operatorname{gcd}(a, 0)=a$. a is indeed the greatest common divisor of a and 0 . Base case is correct.

Induction:

We want to prove the following claim.

Claim 2.

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

Proof. Assume $\operatorname{gcd}(b, a \bmod b)$ is the greatest common divisor of b and $(a \bmod b)$.

1. If $c|a, c| b$, then

$$
\frac{a \bmod b}{c}=\frac{a-k \cdot b}{c}=\frac{a}{c}-k \cdot \frac{b}{c}
$$

Since $c \mid a$ and $c \mid b$, then $k, \frac{a}{c}$ and $\frac{b}{c}$ are all integers. So $\frac{a \bmod b}{c}$ must be an integer as well. In other words, $c \mid(a \bmod b)$.
2. If $c|a, c| a \bmod b$, then

$$
\frac{a}{c}=\frac{(a-k \cdot b)+k \cdot b}{c}=\frac{a-k \cdot b}{c}+k \cdot \frac{b}{c}
$$

Since $c \mid a$ and $c \mid a \bmod b$, then $k, \frac{a-k b}{c}$ and $\frac{b}{c}$ are all integers. So $\frac{a}{c}$ must be an integer as well. In other words, $c \mid a$.
From the above two parts, we know that for any arbitrary integer c, if it divides a and b, it divides $(a \bmod b)$. If it divides b and $a \bmod b$, it divides a as well. So the set of common divisors for (a, b) and $(b, a \bmod b)$ are the same.
By induction hypothesis, $\operatorname{gcd}(b, a \bmod b)$ is correct(i.e. $\operatorname{gcd}(b, a \bmod b)$ is the greatest common divisor of b and $(a \bmod b)$). Since the set of common divisors are the same for (a, b) pair and $(b, a \bmod b)$ pair, $\operatorname{gcd}(a, b)$ must as well be the greatest common divisor of a and b.

