Fun with Reductions

Yu Cheng Dec 5, 2017

Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

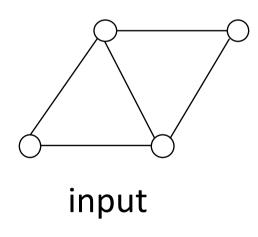
are NP-Hard.

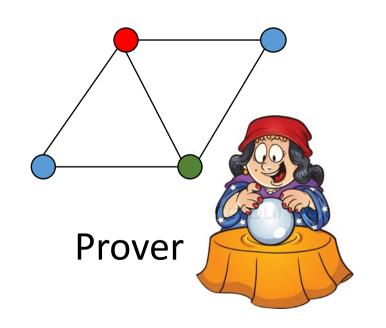
Recap

- P vs NP
- (Polynomial-time) Reductions
- 3-Satisfiability (3SAT)

"Easy to verify" problems: NP

• All decision problems such that we can verify the correctness of a solution in polynomial time.

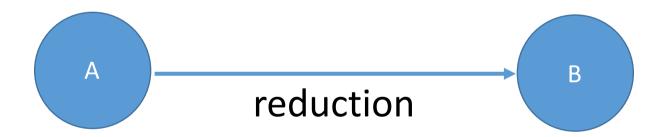




Verifier: OK, that is indeed a solution.

Polynomial time reductions

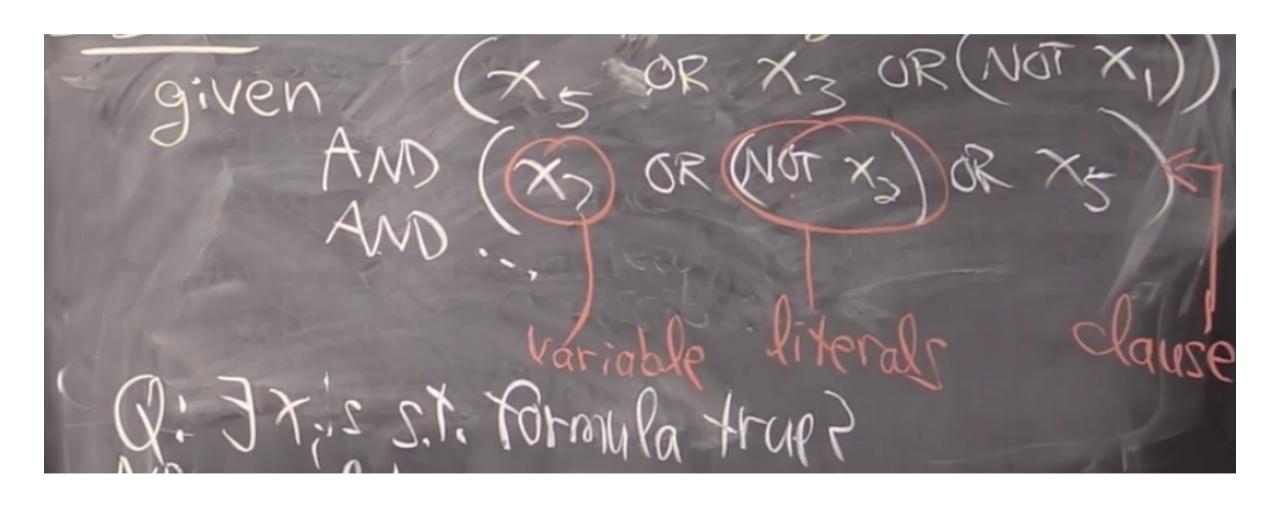
• Reduce A to B: a polynomial time algorithm that maps instances of A to instances of problem B, such that the answers are the same.



• $A \leq_{p} B$: B is at least as hard as A.

If you can solve B (in poly time) then you can solve A.

3-Satisfiability (3SAT)



Gadget-Based Reductions

$$A \leq_{p} B$$
:

Given instances of A, output instances of B.

Build gadgets for pieces of A.

Put the pieces together.

$$3SAT \leq_p X$$

Fun with Hardness Proofs

Algorithmic Lower Bounds:

Fun with Hardness Proofs

Erik Demaine

http://courses.csail.mit.edu/6.890/fall14/lectures/

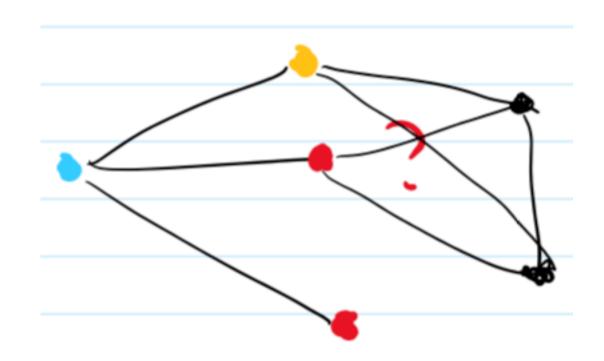
Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

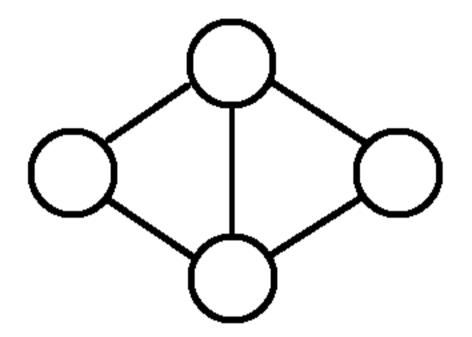
are NP-Hard.

Input: a graph

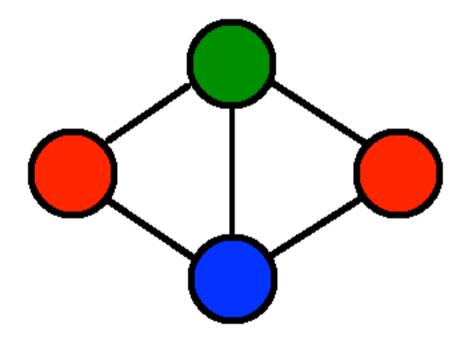


Output: color each vertex using 1 of the 3 colors, so that adjacent vertices do not get the same color.

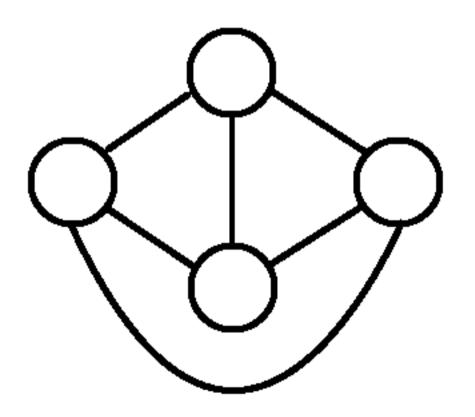
3-Coloring:



3-Coloring: Yes instance



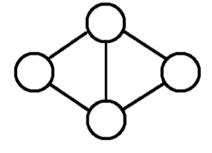
3-Coloring: No instance



$3SAT \leq_p 3$ -Coloring

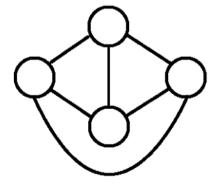
Satisfiable formula

 \iff

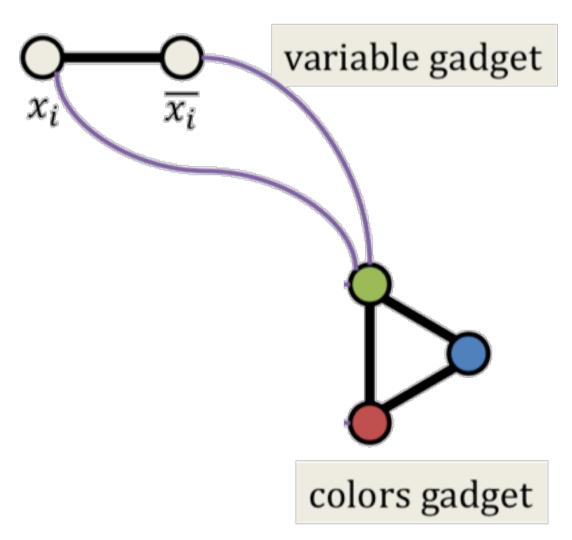


Unsatisfiable formula

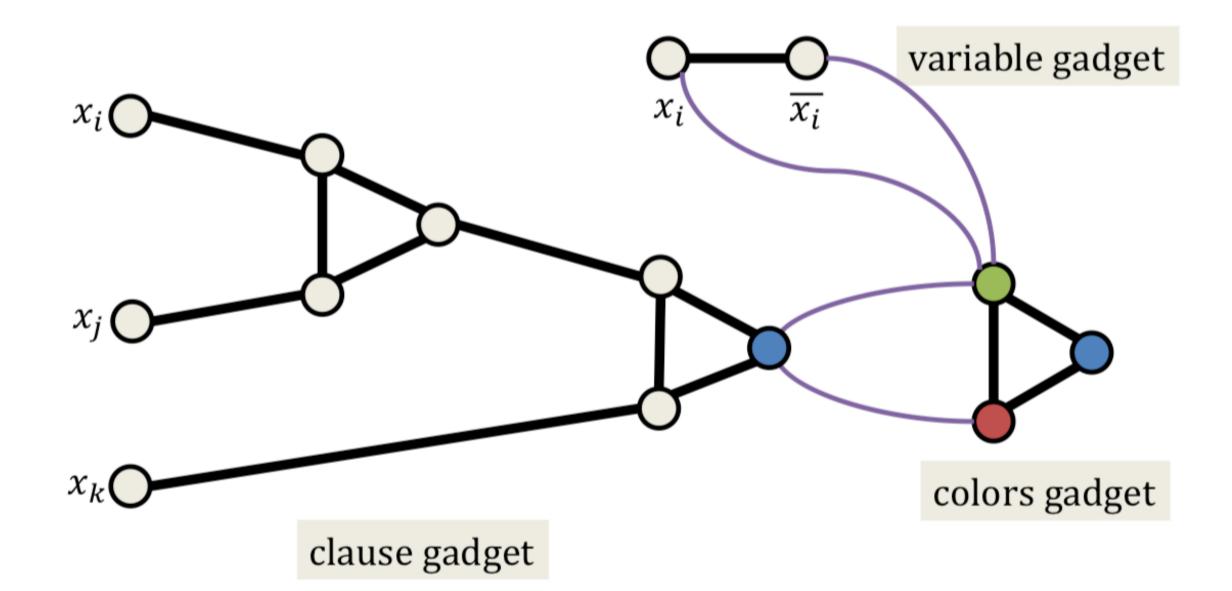
 \iff



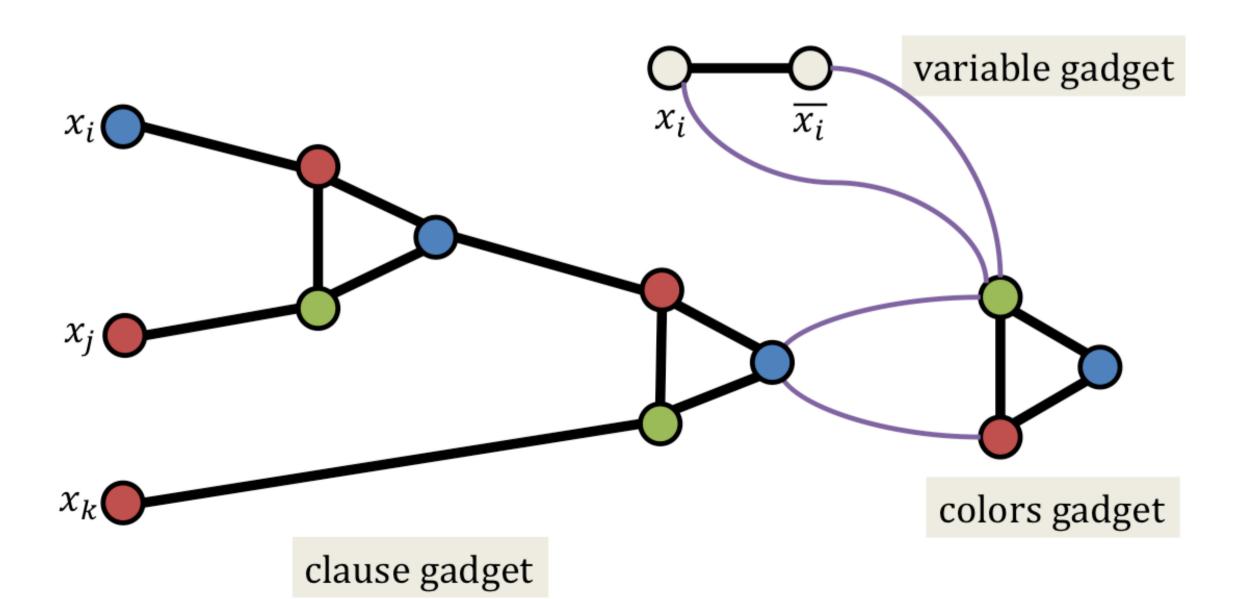
Vertex 3-Coloring [Garey, Johnson, Stockmeyer 1976]



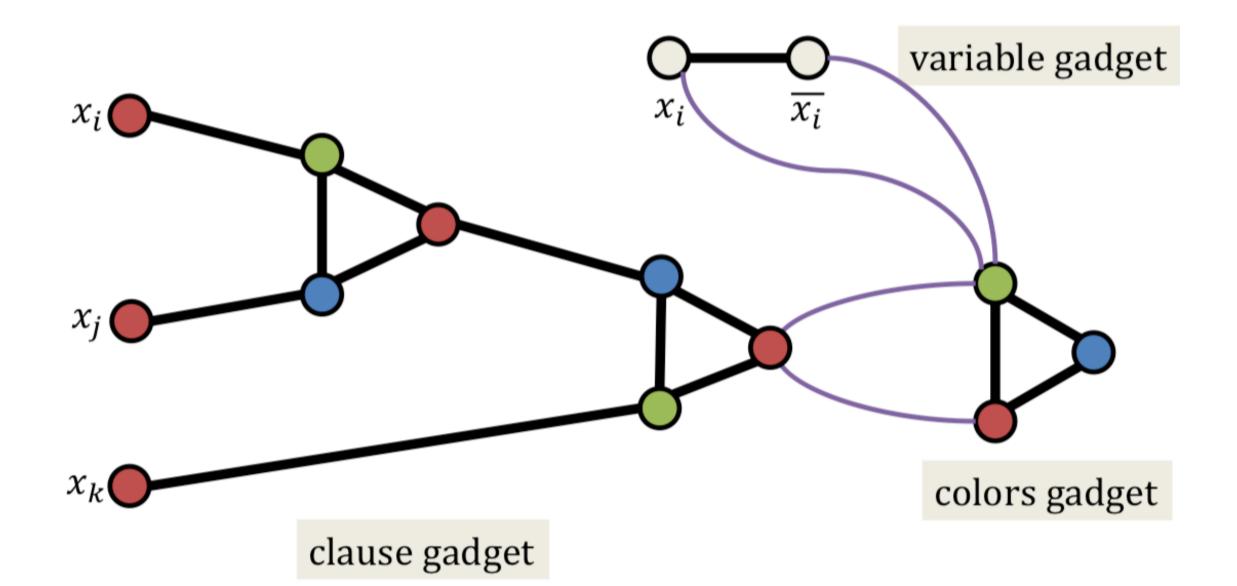
[Garey, Johnson, Stockmeyer 1976]



[Garey, Johnson, Stockmeyer 1976]



[Garey, Johnson, Stockmeyer 1976]



$3SAT \leq_p 3$ -Coloring

• Consequence:

3-Coloring is NP-Complete.

(Because 3-Coloring is also in NP.)

Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

are NP-Hard.

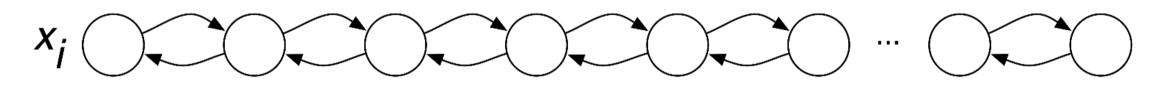
Hamiltonian Cycle

Hamiltonian Cycle

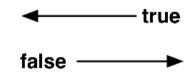
• Input: a (directed) graph.

• Solution: a cycle visiting every vertex exactly once.

Variable Gadget

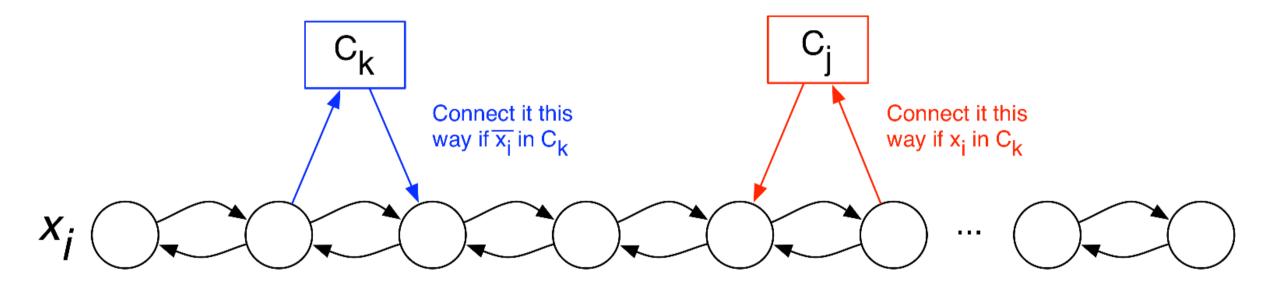


Direction we travel along this chain represents whether to set the variable to **true** or **false**.



Clause Gadget

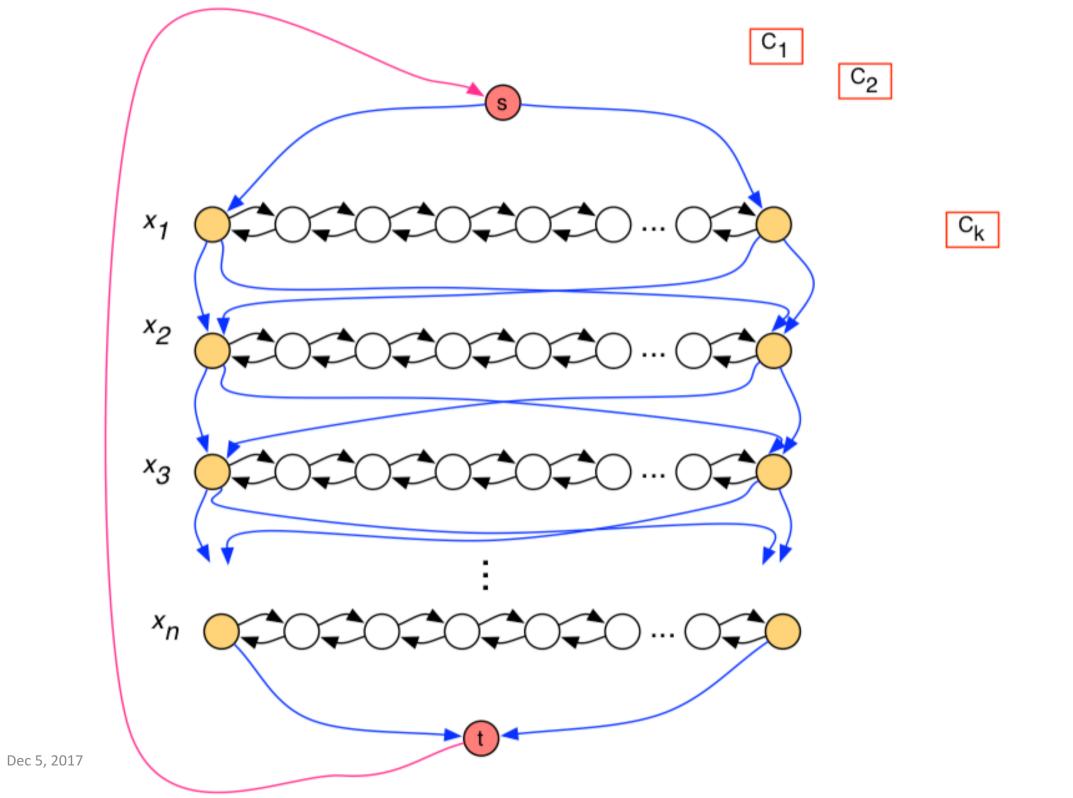
Add a new node for each clause:

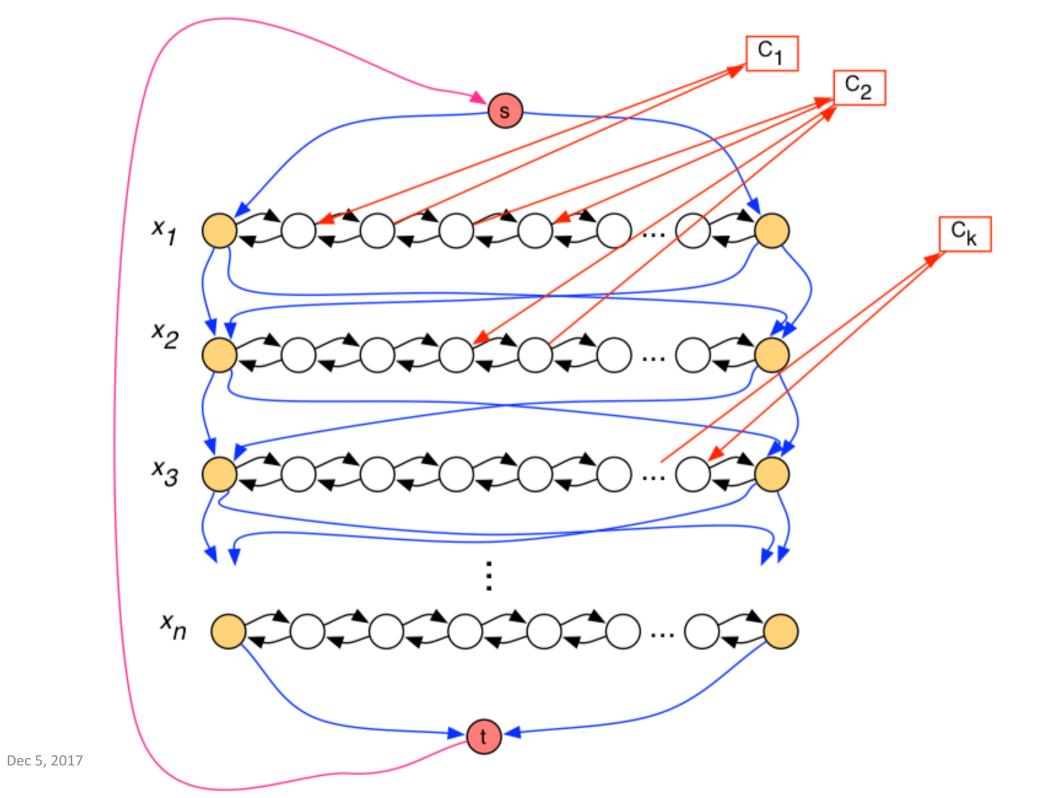


Direction we travel along this chain represents whether to set the variable to **true** or **false**.

false —

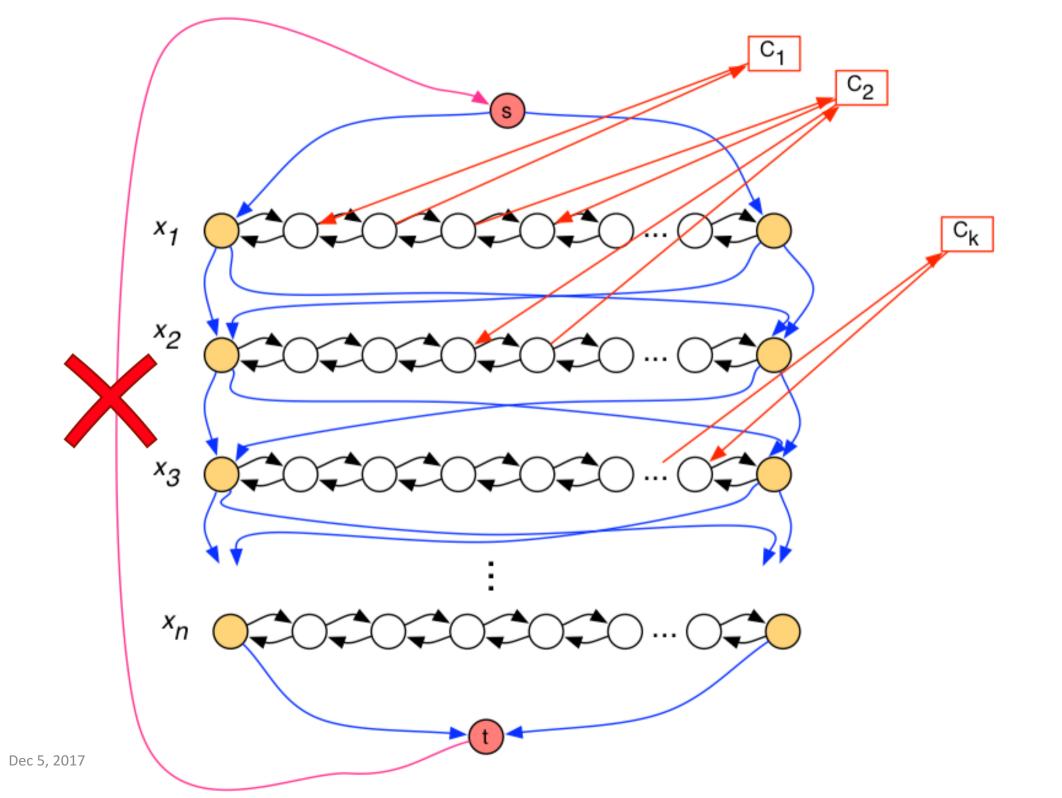
$3SAT \leq_p Hamiltonian Cycle$





$3SAT \leq_p Hamiltonian Cycle$

 $3SAT \leq_{v} Hamiltonian Path$



Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

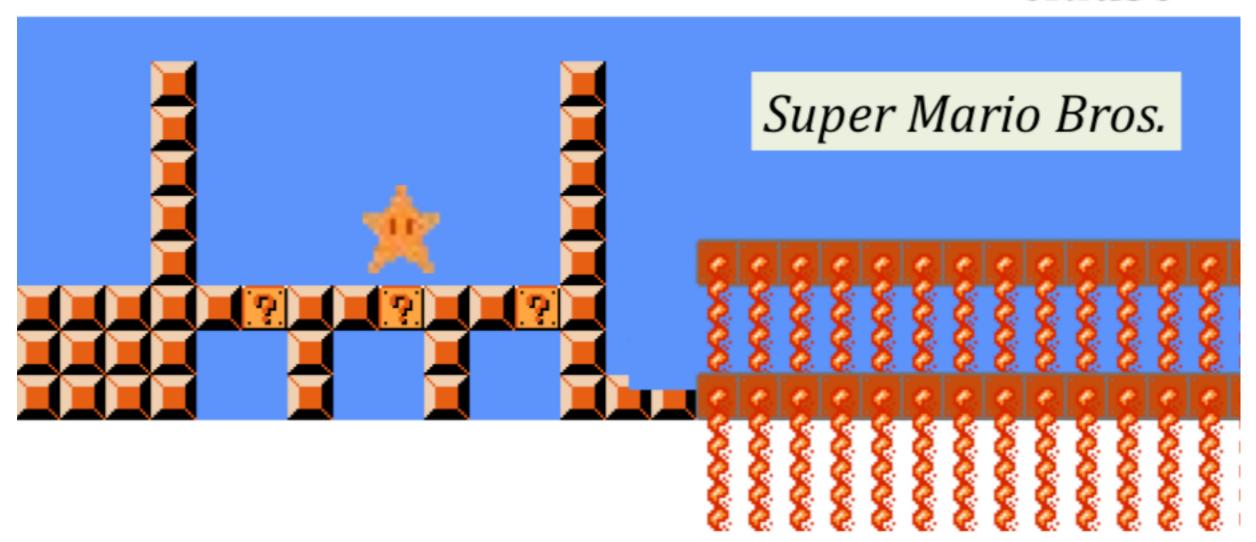
are NP-Hard.

Super Mario Bros. is NP-Hard

[Aloupis, Demaine, Guo 2012]

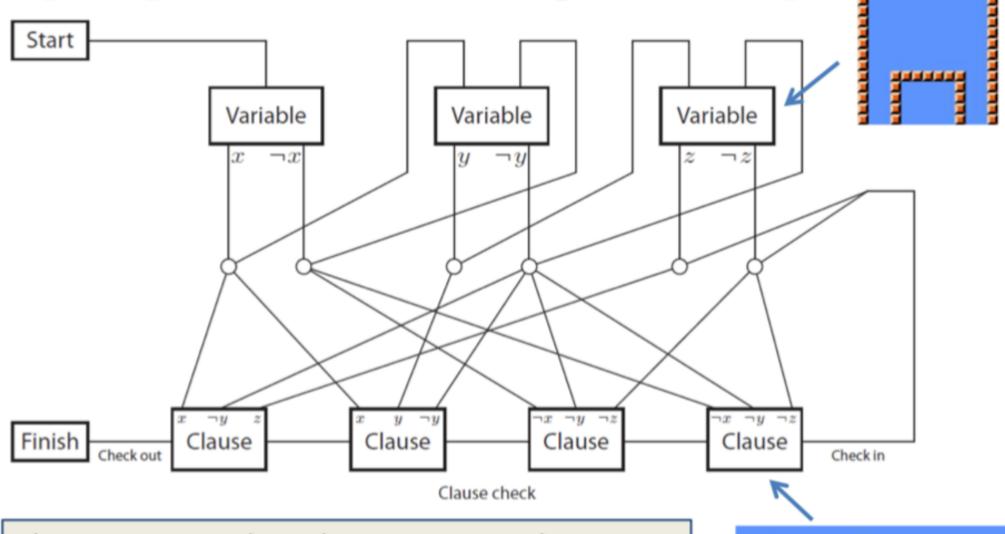
clause variable

clause



Super Mario Bros. is NP-Hard

[Aloupis, Demaine, Guo, Viglietta 2014]

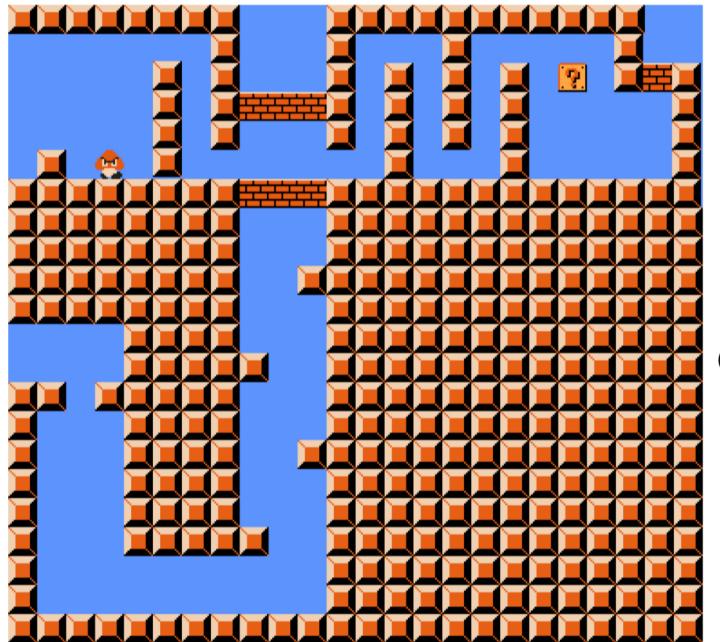


.

 $(x \text{ OR } \neg y \text{ OR } z) \& (x \text{ OR } y \text{ OR } \neg y) \&$ $(\neg x \text{ OR } \neg y \text{ OR } \neg z) \& (\neg x \text{ OR } \neg y \text{ OR } \neg z)$

Super Mario Bros. is NP-Hard

[Aloupis, Demaine, Guo, Viglietta 2014]



crossover