
COMPSCI 330: Design and Analysis of Algorithms September 7, 2017

Lecture 4: Dynamic Programming I
Lecturer: Rong Ge Scribe: Will Long

4.1 Overview

Dynamic programming is a method that follows a similar theme to other techniques learned this semester:
In order to solve a large, complicated problem, we first split it into smaller sub-problems. With dynamic
programming, the basic idea is to break the problem down into many closely related sub-problems, solve
them, and then store their results for later use. In this way, dynamic programming avoids recomputing the
results of the sub-problems, allowing it to achieve better runtimes than naive approaches. In this lecture,
we will demonstrate the technique through two examples: the longest increasing subsequence problem and
the knapsack problem.

4.2 Longest Increasing Subsequence

Definition 4.1 Given an input array A, a subsequence is a list of numbers that appears in the same order
as the elements of A, though not necessarily consecutively. A subsequence x1, x2, · · · , xk is increasing if for
all 1 ≤ i < k, xi < xi+1. The longest increasing subsequence of A is then the increasing subsequence in A
with maximal length.

For instance, consider the array {4, 2, 5, 3, 9, 7, 8, 10, 6}. An example of a subsequence is {4, 2, 5}, an ex-
ample of an increasing subsequence is {2, 3, 8}, and the longest increasing subsequence is {2, 5, 7, 8, 10} (or
{2, 3, 7, 8, 10}).

In this example, we will try to find the length of the longest increasing subsequence of the following array:

A = {4, 2, 3, 5, 1, 7, 10, 8}

The first step in creating a dynamic programming solution is to relate the problem recursively to smaller
sub-problems. We will therefore begin by focusing on just the last element of this sequence, 8. We then have
two options to consider for this element:

Option 1: 8 is not in the longest increasing subsequence.

Option 2: 8 is in the longest increasing subsequence.

Dealing with option 1 is easy. We just recurse on all of the other elements in A, i.e. {4, 2, · · · , 10}. Option 2 is
trickier to deal with. To see why, consider that in this example, the LIS of {4, 2, 3, 5, 1, 7, 10} is {2, 3, 5, 7, 10}.
10 > 8 so we clearly cannot add 8 to the end of this sequence. Our goal then, should be to find a transition
function that properly relates the solution for this sub-problem to that of other sub-problems.

4-1



4-2 Lecture 4: Dynamic Programming I

To this end, we will define a[i] to be the length of the longest increasing subsequence of A that ends at the
ith element of A. We can determine the value of a[i] in the following way. Consider all of the i− 1 elements
in A both previous to A[i] and smaller than it, i.e. {j ∈ [1, i − 1] | A[i] > A[j]}. These are the elements
that A[i] could be appended to in an increasing subsequence. Choose the a[j] with maximal value, and set
a[i] = a[j] + 1 (effectively adding element A[i] to the end of the longest increasing subsequence possible). So
we have:

a[i] =

{
1 ifA[i] < A[j] ∀ j < i
1 + max

j<i,A[j]<A[i]
A[j]

a[i] depends on all of the elements before it, so when we create our dynamic programming table, we will
start at a[1] and then progressively fill it in from left to right. Once we’ve determined values for all a[i], we
just select the one with the maximum value, and the algorithm is complete.

Algorithm 1 Dynamic programming method for LIS
Require: A is an array of length n.
Ensure: LIS is the length of the longest increasing subsequence of A.

procedure LongestIncreasingSubsequence(A)
LIS = 0
for i in {1, 2, · · · , n} do

a[i] = 1
for j in {1, 2, · · · , i− 1} do

if A[j] < A[i] and a[j] + 1 > a[i] then
a[i] = a[j] + 1

end if
end for
if a[i] > LIS then

LIS = a[i]
end if

end for
return LIS

end procedure

4.3 Knapsack

The knapsack problem is stated as follows. There is a knapsack that can hold items of total weight at most
W . There is also a set I of n items available. Each item i ∈ I has an associated weight wi and value vi. The
goal is to select a subset of the items to place in the knapsack, so that the total weight is less than W and
the total value is maximized. Stated in another way, we wish to choose the subset K ⊆ I that maximizes∑
i∈K

vi, subject to
∑
i∈K

wi ≤ W .

As before, we will begin by breaking the problem down into smaller sub-problems. We look at the last item,
and consider two possible options:

Option 1: The last item is not in the knapsack.

Option 2: The last item is in the knapsack.



Lecture 4: Dynamic Programming I 4-3

To compare these two options, we will define a[i, j] to be the maximum total value that can be obtained from
using only the first i items, with a weight capacity of j. We see that if we choose option 1, and do not add
item i to the knapsack, we can just maximize value over the remaining i− 1 items, i.e. a[i, j] = a[i− 1, j]. If
we choose option 2, we add value vi to the knapsack, and then maximize value over the remaining i−1 items,
keeping in mind that the capacity must also be decreased by weight wi, i.e. a[i, j] = vi + a[i− 1, j−wi]. We
will choose the option that provides maximal value, so we have:

a[i, j] = max

{
a[i− 1, j] (do not put item i in knapsack)
vi + a[i− 1, j − wi] (put item i in knapsack)

We must also define base cases, namely whenever i = 0, or j ≤ 0, a[i, j] = 0 (because we can’t add items if
we have no items left or if the capacity is spent). To construct the dynamic programming table, we make a
two-dimensional table, with i on the horizontal axis going from 1 to n, and j on the vertical axis going from
1 to W . We then fill in the table, starting at a[1, 1] and filling in each row from left to right. Once we have
completely filled in the table, our answer will be the value a[n,W ].

Algorithm 2 Dynamic programming method for knapsack problem
Require: I contains n items. Each i ∈ I has a weight wi and a value vi. W is maximum capacity.
Ensure: a[n,W ] is the maximum possible value we can place into knapsack.

procedure Knapsack(I,W )
for i in {1, 2, · · · , n} do

for j in {1, 2, · · · ,W} do
optionOne = a[i− 1, j]
optionTwo = vi + a[i− 1, j − wi]
a[i, j] = max{optionOne, optionTwo}

end for
end for

end procedure


