Lecture 4: Dynamic Programming I

Lecturer: Rong Ge
Scribe: Will Long

4.1 Overview

Dynamic programming is a method that follows a similar theme to other techniques learned this semester: In order to solve a large, complicated problem, we first split it into smaller sub-problems. With dynamic programming, the basic idea is to break the problem down into many closely related sub-problems, solve them, and then store their results for later use. In this way, dynamic programming avoids recomputing the results of the sub-problems, allowing it to achieve better runtimes than naive approaches. In this lecture, we will demonstrate the technique through two examples: the longest increasing subsequence problem and the knapsack problem.

4.2 Longest Increasing Subsequence

Definition 4.1 Given an input array A, a subsequence is a list of numbers that appears in the same order as the elements of A, though not necessarily consecutively. A subsequence $x_{1}, x_{2}, \cdots, x_{k}$ is increasing if for all $1 \leq i<k, x_{i}<x_{i+1}$. The longest increasing subsequence of A is then the increasing subsequence in A with maximal length.

For instance, consider the array $\{4,2,5,3,9,7,8,10,6\}$. An example of a subsequence is $\{4,2,5\}$, an example of an increasing subsequence is $\{2,3,8\}$, and the longest increasing subsequence is $\{2,5,7,8,10\}$ (or $\{2,3,7,8,10\}$).

In this example, we will try to find the length of the longest increasing subsequence of the following array:

$$
A=\{4,2,3,5,1,7,10,8\}
$$

The first step in creating a dynamic programming solution is to relate the problem recursively to smaller sub-problems. We will therefore begin by focusing on just the last element of this sequence, 8 . We then have two options to consider for this element:

Option 1: 8 is not in the longest increasing subsequence.
Option 2: 8 is in the longest increasing subsequence.
Dealing with option 1 is easy. We just recurse on all of the other elements in A, i.e. $\{4,2, \cdots, 10\}$. Option 2 is trickier to deal with. To see why, consider that in this example, the LIS of $\{4,2,3,5,1,7,10\}$ is $\{2,3,5,7,10\}$. $10>8$ so we clearly cannot add 8 to the end of this sequence. Our goal then, should be to find a transition function that properly relates the solution for this sub-problem to that of other sub-problems.

To this end, we will define $a[i]$ to be the length of the longest increasing subsequence of A that ends at the i th element of A. We can determine the value of $a[i]$ in the following way. Consider all of the $i-1$ elements in A both previous to $A[i]$ and smaller than it, i.e. $\{j \in[1, i-1] \mid A[i]>A[j]\}$. These are the elements that $A[i]$ could be appended to in an increasing subsequence. Choose the $a[j]$ with maximal value, and set $a[i]=a[j]+1$ (effectively adding element $A[i]$ to the end of the longest increasing subsequence possible). So we have:

$$
a[i]=\left\{\begin{array}{ll}
1 \\
1+\max _{j<i, A[j]<A[i]} A[j]
\end{array} \quad \text { if } A[i]<A[j] \forall j<i\right.
$$

$a[i]$ depends on all of the elements before it, so when we create our dynamic programming table, we will start at $a[1]$ and then progressively fill it in from left to right. Once we've determined values for all $a[i]$, we just select the one with the maximum value, and the algorithm is complete.

```
Algorithm 1 Dynamic programming method for LIS
Require: \(A\) is an array of length \(n\).
Ensure: LIS is the length of the longest increasing subsequence of \(A\).
    procedure LongestIncreasingSubsequence \((A)\)
        \(L I S=0\)
        for \(i\) in \(\{1,2, \cdots, n\}\) do
            \(a[i]=1\)
            for \(j\) in \(\{1,2, \cdots, i-1\}\) do
                if \(A[j]<A[i]\) and \(a[j]+1>a[i]\) then
                    \(a[i]=a[j]+1\)
            end if
            end for
            if \(a[i]>L I S\) then
                \(L I S=a[i]\)
            end if
        end for
        return \(L I S\)
    end procedure
```


4.3 Knapsack

The knapsack problem is stated as follows. There is a knapsack that can hold items of total weight at most W. There is also a set I of n items available. Each item $i \in I$ has an associated weight w_{i} and value v_{i}. The goal is to select a subset of the items to place in the knapsack, so that the total weight is less than W and the total value is maximized. Stated in another way, we wish to choose the subset $K \subseteq I$ that maximizes $\sum_{i \in K} v_{i}$, subject to $\sum_{i \in K} w_{i} \leq W$.

As before, we will begin by breaking the problem down into smaller sub-problems. We look at the last item, and consider two possible options:

Option 1: The last item is not in the knapsack.
Option 2: The last item is in the knapsack.

To compare these two options, we will define $a[i, j]$ to be the maximum total value that can be obtained from using only the first i items, with a weight capacity of j. We see that if we choose option 1 , and do not add item i to the knapsack, we can just maximize value over the remaining $i-1$ items, i.e. $a[i, j]=a[i-1, j]$. If we choose option 2, we add value v_{i} to the knapsack, and then maximize value over the remaining $i-1$ items, keeping in mind that the capacity must also be decreased by weight w_{i}, i.e. $a[i, j]=v_{i}+a\left[i-1, j-w_{i}\right]$. We will choose the option that provides maximal value, so we have:

$$
a[i, j]=\max \begin{cases}a[i-1, j] & (\text { do not put item } i \text { in knapsack) } \\ v_{i}+a\left[i-1, j-w_{i}\right] & \text { (put item } i \text { in knapsack) }\end{cases}
$$

We must also define base cases, namely whenever $i=0$, or $j \leq 0, a[i, j]=0$ (because we can't add items if we have no items left or if the capacity is spent). To construct the dynamic programming table, we make a two-dimensional table, with i on the horizontal axis going from 1 to n, and j on the vertical axis going from 1 to W. We then fill in the table, starting at $a[1,1]$ and filling in each row from left to right. Once we have completely filled in the table, our answer will be the value $a[n, W]$.

```
Algorithm 2 Dynamic programming method for knapsack problem
Require: \(I\) contains \(n\) items. Each \(i \in I\) has a weight \(w_{i}\) and a value \(v_{i} . W\) is maximum capacity.
Ensure: \(a[n, W]\) is the maximum possible value we can place into knapsack.
    procedure \(\operatorname{Knapsack}(I, W)\)
        for \(i\) in \(\{1,2, \cdots, n\}\) do
            for \(j\) in \(\{1,2, \cdots, W\}\) do
                    optionOne \(=a[i-1, j]\)
            optionTwo \(=v_{i}+a\left[i-1, j-w_{i}\right]\)
            \(a[i, j]=\max \{\) optionOne, optionTwo \(\}\)
            end for
        end for
    end procedure
```

