Lecture 6: Greedy Algorithms

1. **Fractional Knapsack Problem**

 \(W = 10 \ (w_i, v_i) = (6, 20), (5, 15), (4, 10) \)

 - What are the decisions to make?
 - which item should I put into the Knapsack?
 - specify a rule for finding “best” item.
 - put in the item with max value per weight.
 - find \(i \) such that \(\frac{v_i}{w_i} \) is maximized.

 - first put in \((6, 20)\)
 - second, choose \((5, 15)\), put as large fraction as possible.

 \[\text{solution} = 1 \times (6, 20) + 0.8 \times (5, 15) = (10, 32) \]

 - Proof of Correctness.

 idea: 1) assume there is a better solution (towards contradiction)

 2) prove the claimed “better” solution is not better.

 - Proof: without loss of generality

 assume items are sorted in decreasing order of \(\frac{v_i}{w_i} \).

 \[\frac{v_1}{w_1} \geq \frac{v_2}{w_2} \geq \frac{v_3}{w_3} \geq \cdots \geq \frac{v_n}{w_n} \]

 assume ALG gives a solution \((p_1, p_2, \ldots, p_n)\)

 \[(1, 1, 1, 0.5, 0, 0, \ldots, 0) \]

 \[(1, 0.8, 0) \]

 - assume (towards contradiction) that there is a better solution OPT.

 OPT has solution \((q_1, q_2, \ldots, q_n)\)

 (goal: show OPT is no better than ALG)

 Let \(i \) be the first location where \(p_i \neq q_i \)

 By design of the algorithm, we know \(p_i > q_i \)

 since OPT is assumed to be better, there must be
 item \(j \) (\(j > i \)) s.t. \(p_j < q_j \)

 (idea: remove small fraction of item \(j \) from OPT, use the capacity on item \(i \))

 if we remove \(\delta \) fraction of item \(j \) (get capacity \(\delta \cdot w_j \))

 use capacity on item \(i \)
\[q_i' = q_i - \varepsilon \]
\[q_i = q_i + \frac{\sum w_j}{w_i} \quad \text{OPT}' \]

Claim: New solution is as good as OPT

\[
\text{value (OPT')} = \text{value (OPT)} - \left(\sum \frac{v_j}{w_i} + \sum \frac{v_j - v_i}{w_i} \right) \\
\geq \text{value (OPT)} \left(\frac{v_i}{w_i} \geq \frac{v_j}{w_j} \right)
\]

OPT' is closer to ALG.

repeat this argument until this operation cannot be done.
eventually OPT becomes ALG, and each step can only increase the value. \[\text{value (OPT)} \leq \text{value (ALG)} \]

Contradiction \(\square \)

- (Slightly) Simpler proof:
- merge all items with same ratio \(v_i/w_i \):
 - does not change solution because items are divisible.
 - does not change ALG because these items will be consecutive in the sorted list.
- assume wlog \(v_1/w_1 > v_2/w_2 > v_3/w_3 > \ldots > v_n/w_n \)
 - strictly larger because items with same ratio are merged.
- Suppose ALG's solution is \((p_1, p_2, \ldots, p_n) \)
 - OPT's solution is \((q_1, q_2, \ldots, q_n) \neq (p_1, p_2, \ldots, p_n) \)
 - let \(i \) be first item where \(p_i \neq q_i \),
 by design we know \(p_i > q_i \).
 - if value (OPT) > value (ALG), there must be an item \(j \) (\(j > i \))
 such that \(p_j < q_j \).
 - let \(OPT' \) be a solution \((q_1', q_2', \ldots, q_n') \) \(q_t' = q_t \) for \(t \neq i,j \)
 \[q_i' = q_i - \varepsilon \]
 \[q_i = q_i + \frac{\sum w_j}{w_i} \]
 \[
 \text{value (OPT')} = \text{value (OPT)} - \sum \frac{v_j}{w_i} + \sum \frac{\varepsilon w_j}{w_i} \geq \text{value (OPT)} \quad \text{(because } \frac{v_i}{w_i} > \frac{v_j}{w_j})
 \]
 Contradiction, so OPT cannot be better than ALG \(\square \)

- Interval Scheduling
 - which is the first meeting to schedule?
 (earliest meeting)
- Intuition: earlier the better

\[(1, 4), (2, 3), (2, 5) \]

Choose \((2, 3)\) over \((1, 4)\) because it ends earlier.

- **ALG:** always try to schedule the meeting with earliest ending time.

- **Proof of correctness:**
 - Assume **ALG** scheduled meetings \((i_1, i_2, \ldots, i_k)\)
 - Assume **OPT** has a better solution \((j_1, j_2, \ldots, j_t)\) \((t > k)\)
 - Both solutions are sorted in starting time \((s_{i_1} < s_{i_2} < \ldots < s_{i_k})\)
 \((s_{j_1} < s_{j_2} < \ldots < s_{j_t})\)
 - Let \(p\) be the first meeting where \(i_p \neq j_p\)
 - By design of algorithm
 - \(i_p\) ends before \(j_p\)
 - \(i_p\) ends before \(j_{p+1}\) start.

 Now \((i_1, i_2, \ldots, i_p, j_{p+1}, j_{p+2}, \ldots, j_t)\) is also a valid schedule.

OPT' is closer to **ALG**

Repeat this argument, there is an **OPT'** where \(i_p = j_p\) for all \(1 \leq p \leq k\)

\(i_1, i_2, \ldots, i_k\)

\(j_1, j_2, \ldots, j_{k+1}, \ldots, j_t\)

- That cannot happen by design of algorithm. **Contradiction**

- If you don't like the "repeat this argument" step, here is an alternative way to do it.

- **Proof (alternative):** all solutions are sorted in starting time
 - Let **ALG**'s solution be \((i_1, i_2, \ldots, i_k)\)
 - Assume (towards contradiction) that there is a better solution
 - Let \((j_1, j_2, \ldots, j_t)\) \((t > k)\) be an optimal solution that share the longest prefix with **ALG**
If \(i_p = j_p \) for all \(p \leq k \),
OPT scheduled \(j_{k+1} \) after \(j_k \)
ALG did not schedule \(j_{k+1} \)
this is impossible, because \(t_{j_{k+1}} > t_{j_k} \),
ALG tries to schedule \(j_{k+1} \) after \(j_k \), and should succeed.
So this is impossible.

Else let \(P \) be the first meeting that \(i_p \neq j_p \)
by design we know
\[
\tau_{i_p} \leq \tau_{j_p}
\]
since \(\tau_{j_p} \leq s_{j_{p+1}} \), we also have
\[
\tau_{i_p} \leq s_{j_{p+1}}
\]
therefore \((i_1, i_2, \ldots, i_p, j_{p+1}, \ldots, j_t)\) is also an optimal
solution, and it shares a longer prefix with ALG
this contradicts with the assumption.

Therefore OPT cannot be better than ALG \(\square \)