- relationship between joint probabilities and conditional probabilities

$$
\begin{aligned}
\operatorname{Pr}[X=i, Y=j] & =\operatorname{Pr}[X=i] \cdot \frac{\operatorname{Pr}[Y=j \mid X=i]}{} \\
= & \operatorname{Pr}[Y=j] \cdot \operatorname{Pr}[X=i \mid Y=j] \\
\operatorname{Pr}[Y=j \mid X=i] & =\frac{\operatorname{Pr}[Y=j] \cdot \operatorname{Pr}[X=i \mid Y=j]}{\operatorname{Pr}[X=i]}
\end{aligned}
$$

Bayes Law

- Prove linearity of expectation

$$
\begin{aligned}
& \mathbb{E}[X+Y]=\sum_{k} \operatorname{Pr}[X+Y=k] \cdot k \\
& \operatorname{Pr}[X+Y=k]=\sum_{\substack{i, j) \\
i+j=k}} \operatorname{Pr}[X=i, Y=j] \\
& \mathbb{E}[X+Y]=\sum_{k}^{i+j} \sum_{\substack{i, j \\
i+j=k}} \operatorname{Pr}[X=i, Y=j] \cdot k \\
& =\sum_{k} \sum_{\substack{i, j \\
i+j=k}} \operatorname{Pr}[x=i, Y=j](i+j) \\
& \begin{aligned}
& \sum_{k} \sum_{i, i, j} \operatorname{Pr}\left[(x=i, Y=j] \cdot i \quad \frac{\sum_{k} \sum_{i, i, j=k} \operatorname{Pr}[x=i, Y=j] \cdot j}{E}\right. \\
&=\sum_{(i, j)} \operatorname{Pr}[x=i, Y=j] \cdot i \quad
\end{aligned} \\
& =\sum_{i}(\underbrace{\operatorname{Pr}_{r}[X=i, Y=j]}_{\operatorname{pr}_{r}[X=i]}) i \\
& =\sum_{i} \operatorname{Pr}[x=i] \cdot i \\
& =\mathbb{E}[X]
\end{aligned}
$$

- Quick Sort
- Worst case example suppose we always pick the first number

$$
\begin{aligned}
& \{1,2,3, \ldots, n\} \\
& \uparrow \downarrow \\
& \{2,3, \ldots, n\}
\end{aligned}
$$

$$
\{3, \ldots, n\}
$$

running time $=\Theta\left(n^{2}\right)$

- randomness help
- try to analyze the expected running time of quick sort.

intuition: running time "looks like" $O(n \log n)$
- use induction

Let X_{n} be running time of quick sort with n numbers

$$
E\left[X_{n}\right]
$$

Induction hypothesis: $\mathbb{E}\left[X_{n}\right] \leqslant C n \log _{2} n$ r excursion

$$
=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbb{E}\left[x_{i-1}\right]+\mathbb{E}\left[x_{n-i}\right]\right)+A_{n}
$$

Base case: $E\left[X_{0}\right]=0 \quad \mathbb{E}\left[X_{1}\right]=0$

$$
\begin{aligned}
& \text { Induction step: } \\
& \mathbb{E}\left[X_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} \underline{0,1,2, \ldots n-1}\left(\underline{\mathbb{E}\left[X_{i-1}\right]}+\underline{\left.\mathbb{E}\left[X_{n-1}\right]\right)}+A \cdot n\right. \\
&=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{t}\right] \leqslant C \\
&\left.\leqslant \frac{2}{n} \cdot C \cdot X_{i-1}\right]+\sum_{i=1}^{n}(i-1) \log 2(i-1)+A n
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{2}{n} \cdot C \cdot \sum_{i=1}(i-1) \log _{2}(i-1)+A n \\
& \leq \frac{2}{n} C \cdot\left[\sum_{i=1}^{n}(i-1) \log _{2} \frac{n}{2}+\sum_{i=\frac{n}{n}+1}^{n}(i-1) \log _{2} n\right]+A \cdot n \\
& =\frac{2}{n} C\left[\sum_{i=1}^{n}(i-1)\left(\log _{2} n-1\right)+\sum_{i=\frac{n}{2}+1}^{n}(i-1) \log _{2} n\right]+A \cdot n \\
& =\frac{2}{n} C\left[\sum_{i=1}^{n}(i-1) \log _{2} n-\sum_{i=1}^{n}(i-1)\right]+A \cdot n \\
& \left.=\frac{2}{n} C \cdot \frac{n n(n-1)}{2} \log _{2} n-\frac{2}{n} \cdot C \cdot \frac{n}{2} \frac{n}{2}-A\right)+A n \\
& \leq C \cdot n \cdot \log _{2} n-C \cdot \frac{n}{4}+A \cdot n \\
& \left.\leq C \cdot n \cdot \log _{2} n \quad \text { (when } C \geq 4 \cdot A\right) \quad \text { for } \operatorname{sim} p \\
& \leq
\end{aligned}
$$

Therefore the running time is bounded by $4 \cdot A \cdot \log _{2} n$.

