Lecture 8 : Randomized Algorithms

Lecturer: Rong Ge
Scribe: Will Wang

1 Basic Probability

Randomized algorithms are algorithms that make use of use of random decisions. Before we delve into them, we first review of basic probability.

Random Variable: Variable whose value depend on a random phenomenon. For example, tossing a fair coin, we have 0.5 probability to get either a head or a tail.

Joint Probability: The probability of event Y occurring at the same time event X occurs. $P(X=i, Y=j)$

Independence: The probability that one event occurs in no way affects the probability of the other event occurring. $P(X=i, Y=j)=P(X=i) P(Y=j)$

Conditional Probability: Probability of event X given we already know occurance of event Y. $P(X=i \mid Y=j)=\frac{P(X=i, Y=j)}{P(Y=j)}$

Expectation: Weighted average of the possible values that X can take, each value being weighted according to the probability of that event occurring. $E(X)=\sum X * P(X)$

Conditional Expectation: Expectations of conditioned random variable $E(X \mid Y=j)=$ $\sum X * P(X \mid Y=j)$

Law of Total Expectation: Expectations of conditioned random variable $E(X)=$ $\sum E(X \mid Y=j) * P(Y=j)$. Here the $E(X)$ can be interpreted as expected running time of ALG, when $E(X \mid Y=j)$ is runtime of ALG after fixing the first decision and $P(Y=j)$ is first random decision in ALG.

1.1 Relationship Between Joint Probabilities and Conditional Probabilities

Here we show the relationship between joint probabilities and conditional probabilities:

$$
\begin{aligned}
P(X=i, Y=j) & =P(X=i) P(Y=j \mid X=i) \\
& =P(Y=j) P(X=i \mid Y=j) \\
P(Y=j \mid X=i) & =\frac{P(Y=j) P(X=i \mid Y=j)}{P(X=i)}
\end{aligned}
$$

1.2 Prove Linearity of Expectation

Here we prove the linearity of expectation $E(X+Y)=E(X)+E(Y)$:

$$
\begin{aligned}
P(X+Y=k) & =\sum_{i+j=k} P(X=i, Y=j) \\
E(X+Y) & =\sum_{k} P(X+Y=k) k \\
& =\sum_{k} \sum_{i+j=k} P(X=i, Y=j)(i+j) \\
& =\sum_{k} \sum_{i+j=k} P(X=i, Y=j) i+\sum_{k} \sum_{i+j=k} P(X=i, Y=j) j \\
& =\sum_{i, j} P(X=i, Y=j) i+\sum_{i, j} P(X=i, Y=j) j \\
& =\sum_{i}\left(\sum_{j} P(X=i, Y=j) i\right)+\sum_{j}\left(\sum_{i} P(X=i, Y=j) j\right) \\
& =\sum_{i} P(X=i) i+\sum_{j} P(Y=j) j \\
& =E(X)+E(Y)
\end{aligned}
$$

2 Two Types of Randomized Algorithms

Randomized algorithms can be classified into two types:

Las Vegas Algorithm:

Always outputs the correct answer but running time is random.
Analysis: Compute expected running time.

Monte Carlo Algorithm:

Always run in a fixed amount of time but result may be incorrect.
Requirement: Result is correct with probability at least $2 / 3$.

3 Quick Sort

We are interested in the average/expected running time of QuickSort which can be categorized into Las Vegas Alogrithm. Recall the algorithm: it first divides a large array into two smaller sub-arrays: the low elements and the high elements. Quicksort can then recursively sort the sub-arrays.

Example: to sort a list of numbers a[]$=4,2,8,6,3,1,7,5$. We first pick a random pivot number (say 3). Then we partition the array into numbers smaller and larger than the pivot (2, 1, $4,8,6,7,5)$. And then we recursively sort the two parts.

Worst Case: Suppose we always pick the first number. Then we can easily see the the running time is $\Theta\left(n^{2}\right)$.

Randomness Helps: The goal here is to analyze the expected running time of quicksort. Our intuition is that the running time looks like $O(n \log n)$ on average. We prove this by using induction in the following:

Let X_{n} be running time of quick sort with n numbers. Then $E\left(X_{n}\right)$ is the average running time we are trying to analyze.

Induction Hypothesis: $E\left(X_{n}\right) \leq C n \log _{2} n$

Recursion:

$$
\begin{aligned}
E\left(X_{n}\right) & =\sum_{i=1}^{n} P(\text { Pivot number is ith smallest }) E\left(X_{n} \mid \text { pivot number is ith smallest }\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(E\left(X_{i-1}+E\left(X_{n-1}\right)\right)+A n\right)
\end{aligned}
$$

Base Case: $E\left(X_{0}\right)=0, E\left(X_{1}\right)=0$ Induction Step:

$$
\begin{aligned}
E\left(X_{n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(E\left(X_{i-1}\right)+E\left(X_{n-1}\right)\right)+A n \\
& =\frac{2}{n} \sum_{i=1}^{n} E\left(X_{i-1}\right)+A n \\
& \leq \frac{2}{n} C \sum_{i=1}^{n}(i-1) \log _{2}(i-1)+A n \\
& \leq \frac{2}{n} C\left[\sum_{i=1}^{\frac{n}{2}}(i-1) \log _{2}\left(\frac{n}{2}\right)+\sum_{i=\frac{n}{2}+1}^{n}(i-1) \log _{2} n\right]+A n \\
& =\frac{2}{n} C\left[\sum_{i=1}^{\frac{n}{2}}(i-1)\left(\log _{2} n-1\right)+\sum_{i=\frac{n}{2}+1}^{n}(i-1) \log _{2} n\right]+A n \\
& =\frac{2}{n} C\left[\sum_{i=1}^{n}(i-1) \log _{2} n-\sum_{i=1}^{\frac{n}{2}}(i-1)\right]+A n \\
& =\frac{2}{n} C\left[\frac{n(n-1)}{2} \log _{2} n-\frac{\frac{n}{2}\left(\frac{n}{2}-1\right)}{2}\right]+A n \\
& \leq C * n * \log _{2} n-C * \frac{n}{4}+A n \\
& \leq C * n * \log _{2} n
\end{aligned}
$$

when $C \geq 4 A$
Therefore the running time is bounded by $4 * A * n * \log _{2} n$

