CPS 570: Artificial Intelligence

Bayesian networks

Instructor: Vincent Conitzer

Specifying probability distributions

- Specifying a probability for every atomic event is impractical
- $P\left(X_{1}, \ldots, X_{n}\right)$ would need to be specified for every combination x_{1}, \ldots, x_{n} of values for X_{1}, \ldots, X_{n}
- If there are k possible values per variable...
- ... we need to specify $k^{n}-1$ probabilities!
- We have already seen it can be easier to specify probability distributions by using (conditional) independence
- Bayesian networks allow us
- to specify any distribution,
- to specify such distributions concisely if there is (conditional) independence, in a natural way

A general approach to specifying

probability distributions

- Say the variables are X_{1}, \ldots, X_{n}
- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)$
- or:
- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{n}\right) P\left(X_{n-1} \mid X_{n}\right) P\left(X_{n-2} \mid X_{n}, X_{n-1}\right) \ldots P\left(X_{1} \mid X_{n}, \ldots, X_{2}\right)$
- Can specify every component
- For every combination of values for the variables on the right of |, specify the probability over the values for the variable on the left
- If every variable can take k values,
- $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$ requires $(k-1) k^{i-1}$ values
- $\Sigma_{i=\{1, \ldots, n\}}(k-1) k^{i-1}=\Sigma_{i=\{1, \ldots n\}} k^{i-k^{-1}}=k^{n}-1$
- Same as specifying probabilities of all atomic events - of course, because we can specify any distribution!

Graphically representing influences

Conditional independence to

the rescue!

- Problem: $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$ requires us to specify too many values
- Suppose X_{1}, \ldots, X_{i-1} partition into two subsets, S and T, so that X_{i} is conditionally independent from T given S
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{S}, T\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{S}\right)$
- Requires only $(k-1) k^{|S|}$ values instead of ($k-$ 1) $\mathrm{k}^{\mathrm{i}-1}$ values

Graphically representing influences

- ... if X_{4} is conditionally independent from X_{2} given X_{1} and X_{3}

Rain and sprinklers example

sprinklers is independent of raining, so no
edge between them
raining (X)

$$
\mathrm{P}(\mathrm{X}=1)=.3
$$

grass wet (Z)

$$
\mathrm{P}(\mathrm{Y}=1)=.4
$$

Each node has a conditional probability table (CPT)

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{X}=0, \mathrm{Y}=0)=.1 \\
& \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{X}=0, \mathrm{Y}=1)=.8 \\
& \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{X}=1, \mathrm{Y}=0)=.7 \\
& \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{X}=1, \mathrm{Y}=1)=.9
\end{aligned}
$$

Rigged casino example

die 2 is conditionally independent of die 1 given casino rigged, so no edge between them

Rigged casino example with

poorly chosen order

both the dice have relevant information for whether the casino is rigged need 36 probabilities here!

More elaborate rain and

 sprinklers example

Atomic events

- Can easily calculate the probability of any atomic event
- $P(+r,+s,+n,+g,+d)=P(+r) P(+s) P(+n \mid+r) P(+g \mid+r,+s) P(+d \mid+n,+g)$
- Can also sample atomic events easily

Inference

- Want to know: $P(+r \mid+d)=P(+r,+d) / P(+d)$
- Let's compute $\mathrm{P}(+r,+\mathrm{d})$

Inference...

- $P(+r,+d)=\Sigma_{s} \Sigma_{g} \Sigma_{n} P(+r) P(s) P(n \mid+r) P(g \mid+r, s) P(+d \mid n, g)=$

$$
P(+r) \Sigma_{s} P(s) \Sigma_{g} P(g \mid+r, s) \Sigma_{n} P(n \mid+r) P(+d \mid n, g)
$$

Variable elimination

- From the factor $\Sigma_{n} P(n \mid+r) P(+d \mid n, g)$ we sum out n to obtain a factor only depending on g
- $\left[\Sigma_{n} P(n \mid+r) P(+d \mid n,+g)\right]=P(+n \mid+r) P(+d \mid+n,+g)+P(-n \mid+r) P(+d \mid-n,+g)=.3^{*} .9+.7^{*} .5=.62$
- $\left[\Sigma_{n} P(n \mid+r) P(+d \mid n,-g)\right]=P(+n \mid+r) P(+d \mid+n,-g)+P(-n \mid+r) P(+d \mid-n,-g)=.3^{*} .4+.7^{*} .3=.33$
- Continuing to the left, g will be summed out next, etc. (continued on board)

Elimination order matters

- $P(+r,+d)=\Sigma_{n} \Sigma_{s} \Sigma_{g} P(+r) P(s) P(n \mid+r) P(g \mid+r, s) P(+d \mid n, g)=$ $P(+r) \Sigma_{n} P(n \mid+r) \Sigma_{s} P(s) \Sigma_{g} P(g \mid+r, s) P(+d \mid n, g)$
- Last factor will depend on two variables in this case!

Don't always need to sum over all variables

- Can drop parts of the network that are irrelevant
- $P(+r,+s)=P(+r) P(+s)=.6 * .2=.12$
- $P(+n,+s)=\sum_{r} P(r,+n,+s)=\sum_{r} P(r) P(+n \mid r) P(+s)=P(+s) \sum_{r} P(r) P(+n \mid r)=$
$P(+s)(P(+r) P(+n \mid+r)+P(-r) P(+n \mid-r))=.6^{*}\left(.2^{*} .3+.8^{*} .4\right)=.6^{*} .38=.228$
- $\mathrm{P}(+\mathrm{d} \mid+\mathrm{n},+\mathrm{g},+\mathrm{s})=\mathrm{P}(+\mathrm{d} \mid+\mathrm{n},+\mathrm{g})=.9$

Trees are easy

- Choose an extreme variable to eliminate first
- Its probability is "absorbed" by its neighbor
- $\ldots \Sigma_{\mathrm{x} 4} \mathrm{P}\left(\mathrm{x}_{4} \mid \mathrm{x}_{1}, \mathrm{x}_{2}\right) \ldots \Sigma_{\mathrm{x} 5} \mathrm{P}\left(\mathrm{x}_{5} \mid \mathrm{x}_{4}\right)=\ldots \Sigma_{\mathrm{x} 4} \mathrm{P}\left(\mathrm{x}_{4} \mid \mathrm{x}_{1}, \mathrm{x}_{2}\right)\left[\Sigma_{\mathrm{x} 5} \mathrm{P}\left(\mathrm{x}_{5} \mid \mathrm{x}_{4}\right)\right] \ldots$

Clustering algorithms

- Merge nodes into "meganodes" until we have a tree
- Then, can apply special-purpose algorithm for trees
- Merged node has values $\{+n+g,+n-g,-n+g,-n-g\}$
- Much larger CPT

Logic gates in Bayes nets

- Not everything needs to be random...

AND gate
OR gate

Modeling satisfiability as a Bayes Net

- $\left(+\mathrm{X}_{1}\right.$ OR $\left.-\mathrm{X}_{2}\right)$ AND $\left(-\mathrm{X}_{1}\right.$ OR $-\mathrm{X}_{2}$ OR $\left.-\mathrm{X}_{3}\right)$
$P(+f)>0$ iff formula is satisfiable, so inference is NP-hard

$$
\begin{aligned}
& \mathrm{P}\left(+\mathrm{f} \mid+\mathrm{c}_{1},+\mathrm{c}_{2}\right)=1 \\
& \mathrm{P}\left(+\mathrm{f} \mid-\mathrm{c}_{1},+\mathrm{c}_{2}\right)=0 \\
& \mathrm{P}\left(+\mathrm{f} \mid+\mathrm{c}_{1},-\mathrm{c}_{2}\right)=0 \\
& \mathrm{P}\left(+\mathrm{f} \mid-\mathrm{c}_{1},-\mathrm{c}_{2}\right)=0
\end{aligned}
$$

$P(+f)=\left(\# s a t i s f y i n g\right.$ assignments $/ 2^{n}$), so inference is \#P-hard (because counting number of satisfying assignments is)

More about conditional independence

- A node is conditionally independent of its non-descendants, given its parents
- A node is conditionally independent of everything else in the graph, given its parents, children, and children's parents (its Markov blanket)

General criterion: d-separation

- Sets of variables X and Y are conditionally independent given variables in Z if all paths between X and Y are blocked; a path is blocked if one of the following holds:
- it contains U -> V -> W or U <- V <- W or $\mathrm{U}<-\mathrm{V}$-> W , and V is in Z
- it contains $U->V<-W$, and neither V nor any of its descendants are in Z

- N is independent of G given R
- N is not independent of S given R and D

