
CPS 570: Artificial Intelligence

First-Order Logic

Instructor: Vincent Conitzer



Limitations of propositional logic
• So far we studied propositional logic

• Some English statements are hard to model in 

propositional logic:

• “If your roommate is wet because of rain, your 

roommate must not be carrying any umbrella”

• Pathetic attempt at modeling this:

• RoommateWetBecauseOfRain => 

(NOT(RoommateCarryingUmbrella0) AND 

NOT(RoommateCarryingUmbrella1) AND 

NOT(RoommateCarryingUmbrella2) AND …)



Problems with propositional logic

• No notion of objects

• No notion of relations among objects

• RoommateCarryingUmbrella0 is instructive to us, 

suggesting 

– there is an object we call Roommate,

– there is an object we call Umbrella0,

– there is a relationship Carrying between these two objects

• Formally, none of this meaning is there

– Might as well have replaced RoommateCarryingUmbrella0  

by P



Elements of first-order logic

• Objects: can give these names such as Umbrella0, 

Person0, John, Earth, …

• Relations: Carrying(., .), IsAnUmbrella(.)

– Carrying(Person0, Umbrella0), 

IsUmbrella(Umbrella0)

– Relations with one object = unary relations = 

properties

• Functions: Roommate(.)

– Roommate(Person0)

• Equality: Roommate(Person0) = Person1



Things to note about functions

• It could be that we have a separate name for 

Roommate(Person0)

• E.g., Roommate(Person0) = Person1

• … but we do not need to have such a name

• A function can be applied to any object

• E.g., Roommate(Umbrella0)



Reasoning about many objects at once

• Variables: x, y, z, … can refer to multiple objects

• New operators “for all” and “there exists”

– Universal quantifier and existential quantifier

• for all x: CompletelyWhite(x) => 

NOT(PartiallyBlack(x))

– Completely white objects are never partially black

• there exists x: PartiallyWhite(x) AND 

PartiallyBlack(x)

– There exists some object in the world that is partially white 

and partially black



Practice converting English to 

first-order logic

• “John has an umbrella”

• there exists y: (Has(John, y) AND IsUmbrella(y))

• “Anything that has an umbrella is not wet”

• for all x: ((there exists y: (Has(x, y) AND 

IsUmbrella(y))) => NOT(IsWet(x)))

• “Any person who has an umbrella is not wet”

• for all x: (IsPerson(x) => ((there exists y: (Has(x, y) 

AND IsUmbrella(y))) => NOT(IsWet(x))))



More practice converting 

English to first-order logic

• “John has at least two umbrellas”

• there exists x: (there exists y: (Has(John, x) AND 

IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) 

AND NOT(x=y))

• “John has at most two umbrellas”

• for all x, y, z: ((Has(John, x) AND IsUmbrella(x) 

AND Has(John, y) AND IsUmbrella(y) AND 

Has(John, z) AND IsUmbrella(z)) => (x=y OR x=z 

OR y=z))



Even more practice converting 

English to first-order logic…

• “Duke’s basketball team defeats any other 

basketball team”

• for all x: ((IsBasketballTeam(x) AND 

NOT(x=BasketballTeamOf(Duke))) => 

Defeats(BasketballTeamOf(Duke), x))

• “Every team defeats some other team”

• for all x: (IsTeam(x) => (there exists y: 

(IsTeam(y) AND NOT(x=y) AND Defeats(x,y))))



Is this a tautology?

• “Property P implies property Q, or property Q 

implies property P (or both)”

• for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

• (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) 

=> P(x)))



Relationship between universal 

and existential

• for all x: a

• is equivalent to

• NOT(there exists x: NOT(a))



Something we cannot do in 

first-order logic
• We are not allowed to reason in general about relations and 

functions

• The following would correspond to higher-order logic (which is more 

powerful):

• “If John is Jack’s roommate, then any property of John is also a 

property of Jack’s roommate”

• (John=Roommate(Jack)) => for all p: (p(John) => 

p(Roommate(Jack)))

• “If a property is inherited by children, then for any thing, if that 

property is true of it, it must also be true for any child of it”

• for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) 

AND p(y)) => p(x))))



Axioms and theorems

• Axioms: basic facts about the domain, our 

“initial” knowledge base

• Theorems: statements that are logically 

derived from axioms



SUBST

• SUBST replaces one or more variables with 

something else

• For example: 

– SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) 

gives us

– IsHealthy(John) => NOT(HasACold(John))



Instantiating quantifiers
• From

• for all x: a

• we can obtain

• SUBST({x/g}, a)

• From

• there exists x: a

• we can obtain

• SUBST({x/k}, a)

• where k is a constant that does not appear elsewhere in 

the knowledge base (Skolem constant)

• Don’t need original sentence anymore



Instantiating existentials 

after universals

• for all x: there exists y: IsParentOf(y,x)

• WRONG: for all x: IsParentOf(k, x)

• RIGHT: for all x: IsParentOf(k(x), x)

• Introduces a new function (Skolem function)

• … again, assuming k has not been used 

previously



Generalized modus ponens
• for all x: Loves(John, x)

– John loves every thing

• for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))

– Jane feels appreciated by every thing that loves her

• Can infer from this:

• FeelsAppreciatedBy(Jane, John)

• Here, we used the substitution {x/Jane, y/John}

– Note we used different variables for the different sentences

• General UNIFY algorithms for finding a good substitution



Keeping things as general as 

possible in unification
• Consider EdibleByWith 

– e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon

• for all x: for all y: EdibleByWith(Bread, x, y)

– Anything can eat bread with anything

• for all u: for all v: (EdibleByWith(u, v, Spoon) => 

CanBeServedInBowlTo(u,v))

– Anything that is edible with a spoon by something can be served in a bowl 

to that something

• Substitution: {x/z, y/Spoon, u/Bread, v/z}

• Gives: for all z: CanBeServedInBowlTo(Bread, z)

• Alternative substitution {x/John, y/Spoon, u/Bread, v/John} 

would only have given CanBeServedInBowlTo(Bread, John), 

which is not as general



Resolution for first-order logic
• for all x: (NOT(Knows(John, x)) OR IsMean(x) OR 

Loves(John, x))

– John loves everything he knows, with the possible exception of 

mean things

• for all y: (Loves(Jane, y) OR Knows(y, Jane))

– Jane loves everything that does not know her

• What can we unify?  What can we conclude?

• Use the substitution: {x/Jane, y/John}

• Get: IsMean(Jane) OR Loves(John, Jane) OR 

Loves(Jane, John)

• Complete (i.e., if not satisfiable, will find a proof of this), if

we can remove literals that are duplicates after unification

– Also need to put everything in canonical form first



Notes on inference in first-order logic

• Deciding whether a sentence is entailed is 

semidecidable: there are algorithms that will 

eventually produce a proof of any entailed 

sentence

• It is not decidable: we cannot always conclude 

that a sentence is not entailed



(Extremely informal statement of) 

Gödel’s Incompleteness Theorem

• First-order logic is not rich enough to model basic 

arithmetic

• For any consistent system of axioms that is rich 

enough to capture basic arithmetic (in particular, 

mathematical induction), there exist true 

sentences that cannot be proved from those 

axioms



A more challenging exercise

• Suppose:

– There are exactly 3 objects in the world,

– If x is the spouse of y, then y is the spouse of x (spouse is 

a function, i.e., everything has a spouse)

• Prove:

– Something is its own spouse



More challenging exercise
• there exist x, y, z: (NOT(x=y) AND NOT(x=z) AND 

NOT (y=z))

• for all w, x, y, z: (w=x OR w=y OR w=z OR x=y OR 

x=z OR y=z)

• for all x, y: ((Spouse(x)=y) => (Spouse(y)=x))

• for all x, y: ((Spouse(x)=y) => NOT(x=y)) (for the 

sake of contradiction)

• Try to do this on the board…



Umbrellas in first-order logic
• You know the following things:

– You have exactly one other person living in your house, who is 

wet

– If a person is wet, it is because of the rain, the sprinklers, or both

– If a person is wet because of the sprinklers, the sprinklers must be 

on

– If a person is wet because of rain, that person must not be 

carrying any umbrella

– There is an umbrella that “lives in” your house, which is not in its 

house

– An umbrella that is not in its house must be carried by some 

person who lives in that house

– You are not carrying any umbrella

• Can you conclude that the sprinklers are on?



Theorem prover on the web
• https://webspass.spass-prover.org/

• begin_problem(TinyProblem).

• list_of_descriptions.

• name({*TinyProblem*}).

• author({*CPS570*}).

• status(unknown).

• description({*Just a test*}).

• end_of_list.

• list_of_symbols.

• predicates[(F,1),(G,1)].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([U],F(U))).

• formula(forall([V],implies(F(V),G(V)))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(exists([W],G(W))).

• end_of_list.

• end_problem.

https://webspass.spass-prover.org/


Theorem prover on the web…
• begin_problem(ThreeSpouses).

• list_of_descriptions.

• name({*ThreeSpouses*}).

• author({*CPS570*}).

• status(unknown).

• description({*Three Spouses*}).

• end_of_list.

• list_of_symbols.

• functions[spouse].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).

• formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(

X,Y),or(equal(X,Z),equal(Y,Z))))))))))).

• formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(exists([X],equal(spouse(X),X))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(TwoOrThreeSpouses).

• list_of_descriptions.

• name({*TwoOrThreeSpouses*}).

• author({*CPS570*}).

• status(unknown).

• description({*TwoOrThreeSpouses*}).

• end_of_list.

• list_of_symbols.

• functions[spouse].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([X],exists([Y],not(equal(X,Y))))).

• formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(

X,Y),or(equal(X,Z),equal(Y,Z))))))))))).

• formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(exists([X],equal(spouse(X),X))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(FiveSpouses).

• list_of_descriptions.

• name({*FiveSpouses*}).

• author({*CPS570*}).

• status(unknown).

• description({*Five Spouses*}).

• end_of_list.

• list_of_symbols.

• functions[spouse].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([X],exists([Y],exists([Z],exists([V],exists([W],and(not(equal(X,Y)),and(not(equal(X,Z)),and(not(equal(Y,Z)),and(not(eq

ual(X,V)),and(not(equal(Y,V)),and(not(equal(Z,V)),and(not(equal(X,W)),and(not(equal(Y,W)),and(not(equal(Z,W)),not(equal(V,W))))))))

))))))))).

• formula(forall([W],forall([X],forall([Y],forall([Z],forall([U],forall([V],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(

X,Z),or(equal(Y,Z),or(equal(X,U),or(equal(Y,U),or(equal(Z,U),or(equal(W,U),or(equal(X,V),or(equal(Y,V),or(equal(Z,V),or(equal(W,V),o

r(equal(U,V))))))))))))))))))))))).

• formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(exists([X],equal(spouse(X),X))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(Umbrellas).

• list_of_descriptions.

• name({*Umbrellas*}).

• author({*CPS570*}).

• status(unknown).

• description({*Umbrellas*}).

• end_of_list.

• list_of_symbols.

• functions[(House,1),(You,0)].

• predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].

• end_of_list.

• list_of_formulae(axioms).

• formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(

You))))))),equal(X,Y))))).

• formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))).

• formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).

• formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).

• formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).

• formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X))))).

• formula(forall([X],implies(and(Umbrella(X),NotAtHome(X)),exists([Y],and(Person(Y),and(equal(House(X),House(Y)),Carrying(Y,X))))))).

• formula(forall([X],implies(Umbrella(X),not(Carrying(You,X))))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(SprinklersOn).

• end_of_list.

• end_problem.



Applications

• Some serious novel mathematical results proved

• Verification of hardware and software

– Prove outputs satisfy required properties for all inputs

• Synthesis of hardware and software

– Try to prove that there exists a program satisfying such 

and such properties, in a constructive way

• Also: contributions to planning (up next)


