CPS 570: Artificial Intelligence

First-Order Logic

Instructor: Vincent Conitzer

Limitations of propositional logic

- So far we studied propositional logic
- Some English statements are hard to model in propositional logic:
- "If your roommate is wet because of rain, your roommate must not be carrying any umbrella"
- Pathetic attempt at modeling this:
- RoommateWetBecauseOfRain => (NOT(RoommateCarryingUmbrella0) AND NOT(RoommateCarryingUmbrella1) AND NOT(RoommateCarryingUmbrella2) AND ...)

Problems with propositional logic

- No notion of objects
- No notion of relations among objects
- RoommateCarryingUmbrella0 is instructive to us, suggesting
- there is an object we call Roommate,
- there is an object we call Umbrella0,
- there is a relationship Carrying between these two objects
- Formally, none of this meaning is there
- Might as well have replaced RoommateCarryingUmbrella0 by P

Elements of first-order logic

- Objects: can give these names such as Umbrella0, Person0, John, Earth, ...
- Relations: Carrying(., .), IsAnUmbrella(.)
- Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)
- Relations with one object = unary relations = properties
- Functions: Roommate(.)
- Roommate(Person0)
- Equality: Roommate(Person0) = Person1

Things to note about functions

- It could be that we have a separate name for Roommate(Person0)
- E.g., Roommate(Person0) = Person1
- ... but we do not need to have such a name
- A function can be applied to any object
- E.g., Roommate(Umbrella0)

Reasoning about many objects at once

- Variables: x, y, z, \ldots can refer to multiple objects
- New operators "for all" and "there exists"
- Universal quantifier and existential quantifier
- for all x : CompletelyWhite(x) => NOT(PartiallyBlack(x))
- Completely white objects are never partially black
- there exists x : PartiallyWhite(x) AND PartiallyBlack(x)
- There exists some object in the world that is partially white and partially black

Practice converting English to

first-order logic

- "John has an umbrella"
- there exists y: (Has(John, y) AND IsUmbrella(y))
- "Anything that has an umbrella is not wet"
- for all x : ((there exists $\mathrm{y}:(\operatorname{Has}(\mathrm{x}, \mathrm{y})$ AND IsUmbrella(y))) => NOT(IsWet(x)))
- "Any person who has an umbrella is not wet"
- for all x : (IsPerson(x) => ((there exists y : (Has(x, y) AND IsUmbrella(y))) => NOT(IsWet(x))))

More practice converting English to first-order logic

- "John has at least two umbrellas"
- there exists x : (there exists y : (Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND NOT($x=y$))
- "John has at most two umbrellas"
 AND Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND IsUmbrella(z)) => ($x=y$ OR $x=z$ OR $y=z$))

Even more practice converting English to first-order logic...

- "Duke's basketball team defeats any other basketball team"
- for all x: ((IsBasketballTeam(x) AND NOT(x=BasketballTeamOf(Duke))) => Defeats(BasketballTeamOf(Duke), x))
- "Every team defeats some other team"
- for all x : (IsTeam(x) => (there exists y :
(IsTeam(y) AND NOT($x=y$) AND Defeats($x, y)))$)

Is this a tautology?

- "Property P implies property Q, or property Q implies property P (or both)"
- for all x : ($(P(x)=>Q(x))$ OR ($Q(x)=>P(x)))$
- (for all $x:(P(x)=>Q(x))$ OR (for all $x:(Q(x)$
=> $P(x))$)

Relationship between universal and existential

- for all x : a
- is equivalent to
- NOT(there exists x: NOT(a))

Something we cannot do in

first-order logic

- We are not allowed to reason in general about relations and functions
- The following would correspond to higher-order logic (which is more powerful):
- "If John is Jack's roommate, then any property of John is also a property of Jack's roommate"
- $\quad($ John=Roommate(Jack) $)=>$ for all $p:(p($ John $)=>$ p(Roommate(Jack)))
- "If a property is inherited by children, then for any thing, if that property is true of it, it must also be true for any child of it"
- for all p: (IsInheritedByChildren(p) => (for all x, y : ((IsChildOf(x, y) AND $p(y))=>p(x)))$)

Axioms and theorems

- Axioms: basic facts about the domain, our "initial" knowledge base
- Theorems: statements that are logically derived from axioms

SUBST

- SUBST replaces one or more variables with something else
- For example:
- SUBST(\{x/John\}, IsHealthy(x) => NOT(HasACold(x))) gives us
- IsHealthy(John) => NOT(HasACold(John))

Instantiating quantifiers

- From
- for all x : a
- we can obtain
- SUBST(\{x/g\}, a)
- From
- there exists x : a
- we can obtain
- SUBST(\{x/k\}, a)
- where k is a constant that does not appear elsewhere in the knowledge base (Skolem constant)
- Don't need original sentence anymore

Instantiating existentials

after universals

- for all x : there exists y : IsParentOf (y, x)
- WRONG: for all x: IsParentOf(k, x)
- RIGHT: for all x: IsParentOf(k(x), x)
- Introduces a new function (Skolem function)
- ... again, assuming k has not been used previously

Generalized modus ponens

- for all x: Loves(John, x)
- John loves every thing
- for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))
- Jane feels appreciated by every thing that loves her
- Can infer from this:
- FeelsAppreciatedBy(Jane, John)
- Here, we used the substitution \{x/Jane, y/John\}
- Note we used different variables for the different sentences
- General UNIFY algorithms for finding a good substitution

Keeping things as general as possible in unification

- Consider EdibleByWith
- e.g., EdibleByWith(Soup, John, Spoon) - John can eat soup with a spoon
- for all x : for all y : EdibleByWith(Bread, x, y)
- Anything can eat bread with anything
- for all u: for all v: (EdibleByWith(u, v, Spoon) => CanBeServedlnBowlTo(u,v))
- Anything that is edible with a spoon by something can be served in a bowl to that something
- Substitution: $\{x / z, y / S p o o n, u / B r e a d, ~ v / z\}$
- Gives: for all z: CanBeServedInBowlTo(Bread, z)
- Alternative substitution \{x/John, y/Spoon, u/Bread, v/John\} would only have given CanBeServedInBowlTo(Bread, John), which is not as general

Resolution for first-order logic

- for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))
- John loves everything he knows, with the possible exception of mean things
- for all y: (Loves(Jane, y) OR Knows(y, Jane))
- Jane loves everything that does not know her
- What can we unify? What can we conclude?
- Use the substitution: \{x/Jane, y/John\}
- Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)
- Complete (i.e., if not satisfiable, will find a proof of this), if we can remove literals that are duplicates after unification
- Also need to put everything in canonical form first

Notes on inference in first-order logic

- Deciding whether a sentence is entailed is semidecidable: there are algorithms that will eventually produce a proof of any entailed sentence
- It is not decidable: we cannot always conclude that a sentence is not entailed

(Extremely informal statement of) Gödel's Incompleteness Theorem

- First-order logic is not rich enough to model basic arithmetic
- For any consistent system of axioms that is rich enough to capture basic arithmetic (in particular, mathematical induction), there exist true sentences that cannot be proved from those axioms

A more challenging exercise

- Suppose:
- There are exactly 3 objects in the world,
- If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e., everything has a spouse)
- Prove:
- Something is its own spouse

More challenging exercise

- there exist x, y, z : (NOT($x=y$) AND NOT($x=z$) AND NOT ($\mathrm{y}=\mathrm{z}$))
- for all $w, x, y, z:(w=x$ OR $w=y$ OR $w=z$ OR $x=y$ OR $x=z$ OR $y=z$)
- for all x, y : ((Spouse(x)=y) => (Spouse(y)=x))
- for all $x, y:((S p o u s e(x)=y)=>\operatorname{NOT}(x=y))$ (for the sake of contradiction)
- Try to do this on the board...

Umbrellas in first-order logic

- You know the following things:
- You have exactly one other person living in your house, who is wet
- If a person is wet, it is because of the rain, the sprinklers, or both
- If a person is wet because of the sprinklers, the sprinklers must be on
- If a person is wet because of rain, that person must not be carrying any umbrella
- There is an umbrella that "lives in" your house, which is not in its house
- An umbrella that is not in its house must be carried by some person who lives in that house
- You are not carrying any umbrella
- Can you conclude that the sprinklers are on?

Theorem prover on the web

https://webspass.spass-prover.org/

- begin_problem(TinyProblem).
- list_of_descriptions.
- name(\{*TinyProblem*\}).
- author(\{*CPS570*\}).
- status(unknown).
- description(\{*Just a test*\}).
- end_of_list.
- list_of_symbols.
- predicates[(F,1),(G,1)].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([U],F(U))).
- formula(forall([V],implies(F(V),G(V)))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([W],G(W))).
- end_of_list.
- end_problem.

Theorem prover on the web...

- begin_problem(ThreeSpouses).
- list_of_descriptions.
- name(\{*ThreeSpouses*\}).
- author(\{* ${ }^{*}$ PPS570*\}).
- status(unknown).
- description($\left\{^{*}\right.$ Three Spouses*$\left.\left.{ }^{\star}\right\}\right)$.
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).
- formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
- formula(forall($(X]$, forall($[\mathrm{Y}]$,implies(equal(spouse $(\mathrm{X}), \mathrm{Y})$,equal(spouse($(\mathrm{Y}), \mathrm{X}))$))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.

Theorem prover on the web...

- begin_problem(TwoOrThreeSpouses).
- list_of_descriptions.
- name(\{*TwoOrThreeSpouses*\}).
- author(\{* ${ }^{*}$ PPS570*\}).
- status(unknown).
- description($\left\{^{*}\right.$ TwoOrThreeSpouses $\left.\left.{ }^{\star}\right\}\right)$.
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
- formula(exists([X],exists([Y],not(equal(X,Y))))).
- formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
- formula(forall([X],forall([Y],implies(equal(spouse(X), Y$)$,equal(spouse $(\mathrm{Y}), \mathrm{X}))$))).
- end_of_list.
- list_of_formulae(conjectures).
- formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.

Theorem prover on the web...
 begin_problem(FiveSpouses).

list_of_descriptions.
name(\{*FiveSpouses*\}).
author((*$\left.\left.{ }^{*} \mathrm{CPS570}{ }^{*}\right\}\right)$.
status(unknown).
description(\{*Five Spouses*\}).
end_of_list.
list_of_symbols.
functions[spouse].
end_of_list.
list_of_formulae(axioms).
formula(exists([X],exists([Y],exists([Z],exists([V],exists([W], and(not(equal(X,Y)), and(not(equal(X,Z)), and(not(equal(Y,Z)), and(not(eq ual(X,V)),and(not(equal(Y,V)),and(not(equal(Z,V)), and(not(equal(X,W)), and(not(equal(Y,W)),and(not(equal(Z,W)),not(equal(V,W)))))))

formula(forall([W],forall([X],forall([Y],forall([Z],forall([U],forall([V],or(equal(W,X), or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),or(equal(Y,Z),or(equal(X,U),or(equal(Y,U),or(equal(Z,U),or(equal(W,U),or(equal(X,V),or(equal(Y,V),or(equal(Z,V),or(equal(W,V),o

formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
end_of_list.
list_of_formulae(conjectures).
formula(exists([X],equal(spouse(X),X))).
end_of_list.
end_problem.

Theorem prover on the web...

begin_problem(Umbrellas).
list_of_descriptions.
name(\{*Umbrellas*\}).
author(\{*CPS570*\}).
status(unknown).
description(\{*Umbrellas*\}).
end_of_list.
list_of_symbols.
functions[(House, 1),(You,0)].
predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].
end_of_list.
list_of_formulae(axioms).
formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)), and(equal(House(X),House(You)),equal(House(Y),House(You))))))), equal(X,Y))))).
formula(exists([X],and(Person(X), and(equal(House(You),House(X)), and(not(equal(X,You)),Wet(X)))))).
formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).
formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).
formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).
formula(exists([X],and(Umbrella(X), and(equal(House(X),House(You)),NotAtHome(X))))).
formula(forall([X],implies(and(Umbrella(X),NotAtHome $(X))$, exists($(Y]$, and $(\operatorname{Person}(Y)$, and (equal(House (X),House $(Y))$, Carrying $(Y, X))))))$).
formula(forall([X],implies(Umbrella(X), not(Carrying(You,X))))).
end_of_list.
list_of_formulae(conjectures).
formula(SprinklersOn).
end_of_list.
end_problem.

Applications

- Some serious novel mathematical results proved
- Verification of hardware and software
- Prove outputs satisfy required properties for all inputs
- Synthesis of hardware and software
- Try to prove that there exists a program satisfying such and such properties, in a constructive way
- Also: contributions to planning (up next)

