
CPS 570: Artificial Intelligence

Two-player, zero-sum, perfect-information

Games

Instructor: Vincent Conitzer

Game playing

• Rich tradition of creating game-playing programs in AI

• Many similarities to search

• Most of the games studied

– have two players,

– are zero-sum: what one player wins, the other loses

– have perfect information: the entire state of the game is known to

both players at all times

• E.g., tic-tac-toe, checkers, chess, Go, backgammon, …

• Will focus on these for now

• Recently more interest in other games

– Esp. games without perfect information; e.g., poker

• Need probability theory, game theory for such games

“Sum to 2” game
• Player 1 moves, then player 2, finally player 1 again

• Move = 0 or 1

• Player 1 wins if and only if all moves together sum to 2

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-1 -1 1 -1 1 1 -1

Player 1’s utility is in the leaves; player 2’s utility is the negative of this

Backward induction (aka. minimax)
• From leaves upward, analyze best decision for player at

node, give node a value

– Once we know values, easy to find optimal action (choose best value)

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-1 -1 1 -1 1 1 -1

-1 1 1 1

1-1

1

Modified game

• From leaves upward, analyze best decision for

player at node, give node a value

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 -3 4 -5 6 7 -8

-1 4 6 7

6-1

6

A recursive implementation

• Value(state)

• If state is terminal, return its value

• If (player(state) = player 1)

– v := -infinity

– For each action

• v := max(v, Value(successor(state, action)))

– Return v

• Else

– v := infinity

– For each action

• v := min(v, Value(successor(state, action)))

– Return v

Space? Time?

Do we need to see all the leaves?

• Do we need to see the value of the question

mark here?

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 ? 4

Do we need to see all the leaves?

• Do we need to see the values of the question

marks here?

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 6 7? ? -5 -8

Alpha-beta pruning

• Pruning = cutting off parts of the search tree

(because you realize you don’t need to look at

them)

– When we considered A* we also pruned large parts

of the search tree

• Maintain alpha = value of the best option for

player 1 along the path so far

• Beta = value of the best option for player 2

along the path so far

Pruning on beta
• Beta at node v is -1

• We know the value of node v is going to be at least

4, so the -1 route will be preferred

• No need to explore this node further
Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 ? 4

node v

Pruning on alpha
• Alpha at node w is 6

• We know the value of node w is going to be at most

-1, so the 6 route will be preferred

• No need to explore this node further

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 6 7? ? -5 -8

node w

Modifying recursive implementation

to do alpha-beta pruning
• Value(state, alpha, beta)

• If state is terminal, return its value

• If (player(state) = player 1)

– v := -infinity

– For each action

• v := max(v, Value(successor(state, action), alpha, beta))

• If v >= beta, return v

• alpha := max(alpha, v)

– Return v

• Else

– v := infinity

– For each action

• v := min(v, Value(successor(state, action), alpha, beta))

• If v <= alpha, return v

• beta := min(beta, v)

– Return v

Benefits of alpha-beta pruning

• Without pruning, need to examine O(bm) nodes

• With pruning, depends on which nodes we

consider first

• If we choose a random successor, need to

examine O(b3m/4) nodes

• If we manage to choose the best successor first,

need to examine O(bm/2) nodes

– Practical heuristics for choosing next successor to

consider get quite close to this

• Can effectively look twice as deep!

– Difference between reasonable and expert play

Repeated states

• As in search, multiple sequences of moves

may lead to the same state

• Again, can keep track of previously seen

states (usually called a transposition table

in this context)

– May not want to keep track of all previously seen

states…

Using evaluation functions

• Most games are too big to solve even with alpha-

beta pruning

• Solution: Only look ahead to limited depth

(nonterminal nodes)

• Evaluate nodes at depth cutoff by a heuristic

(aka. evaluation function)

• E.g., chess:

– Material value: queen worth 9 points, rook 5, bishop 3,

knight 3, pawn 1

– Heuristic: difference between players’ material values

Chess example

• White to move

Ki B

p R

R

p

p p

K

• Depth cutoff: 3 ply

– Ply = move by one player

Black

White

2

Kb7

Rd8+

Rxf8 Re8

-1

White

…

…

Chess (bad) example

• White to move

Ki B R

p

R

p

p p

K

• Depth cutoff: 3 ply

– Ply = move by one player

Black

White

2

Kb7

Rd8+

Rxf8 Re8

-1

White

…

…

Depth cutoff obscures fact that white R will be captured

Addressing this problem

• Try to evaluate whether nodes are

quiescent

– Quiescent = evaluation function will not

change rapidly in near future

– Only apply evaluation function to quiescent

nodes

• If there is an “obvious” move at a state,

apply it before applying evaluation function

Playing against suboptimal players

• Minimax is optimal against other minimax

players

• What about against players that play in

some other way?

Many-player, general-sum games

of perfect information
• Basic backward induction still works

– No longer called minimax

Player 1

Player 2 Player 2

Player 3 Player 3 Player 3 Player 3

0

0

0

0

00 0

1

11

1 1 11

(1,2,3) (3,4,2)

(1,2,3)

vector of numbers gives each player’s utility

What if other

players do not

play this way?

Games with random moves by “Nature”
• E.g., games with dice (Nature chooses dice roll)

• Backward induction still works…

– Evaluation functions now need to be cardinally right (not just ordinally)

– For two-player zero-sum games with random moves, can we generalize

alpha-beta? How? Player 1

Nature Nature

Player 2 Player 2 Player 2 Player 2

50%

0

0

40%

00 0

1

60%50%

1 1 11

(1,3) (3,2)

(1,3)

(3,4) (1,2)

(3,4)

(2,3.5)

Games with imperfect information

• Players cannot necessarily see the whole current

state of the game

– Card games

• Ridiculously simple poker game:

– Player 1 receives King (winning) or Jack (losing),

– Player 1 can raise or check,

– Player 2 can call or fold

• Dashed lines indicate

indistinguishable states

• Backward induction does not work, need random

strategies for optimality! (more later in course)

1 gets King 1 gets Jack

raise raisecheck check

call fold call fold call fold call fold

“nature”

player 1player 1

player 2 player 2

2 1 1 1 -2 -11 1

Intuition for need of random strategies

• Suppose my strategy is “raise

on King, check on Jack”

– What will you do?

– What is your expected utility?

• What if my strategy is “always

raise”?

• What if my strategy is “always

raise when given King, 10% of

the time raise when given

Jack”?

1 gets King 1 gets Jack

raise raisecheck check

call fold call fold call fold call fold

“nature”

player 1player 1

player 2 player 2

2 1 1 1 -2 -11 1

The state of the art for some games
• Chess:

– 1997: IBM Deep Blue defeats Kasparov

– … there is still debate about whether computers are really better

• Checkers:

– Computer world champion since 1994

– … there was still debate about whether computers are really better…

– until 2007: checkers solved optimally by computer

• Go:

– Branching factor really high, seemed out of reach for a while

– AlphaGo now appears superior to humans

• Poker:

– AI now defeating top human players in 2-player (“heads-up”) games

– 3+ player case much less well-understood

Is this of any value to society?

• Some of the techniques developed for games

have found applications in other domains

– Especially “adversarial” settings

• Real-world strategic situations are usually not

two-player, perfect-information, zero-sum, …

• But game theory does not need any of those

• Example application: security scheduling at

airports

