CPS 570: Artificial Intelligence

Two-player, zero-sum, perfect-information

Games

Instructor: Vincent Conitzer

Game playing

- Rich tradition of creating game-playing programs in AI
- Many similarities to search
- Most of the games studied
- have two players,
- are zero-sum: what one player wins, the other loses
- have perfect information: the entire state of the game is known to both players at all times
- E.g., tic-tac-toe, checkers, chess, Go, backgammon, ...
- Will focus on these for now
- Recently more interest in other games
- Esp. games without perfect information; e.g., poker
- Need probability theory, game theory for such games

"Sum to 2" game

- Player 1 moves, then player 2, finally player 1 again
- Move = 0 or 1
- Player 1 wins if and only if all moves together sum to 2

Player 1's utility is in the leaves; player 2's utility is the negative of this

Backward induction (aka. minimax)

- From leaves upward, analyze best decision for player at node, give node a value
- Once we know values, easy to find optimal action (choose best value)

Modified game

- From leaves upward, analyze best decision for player at node, give node a value

A recursive implementation

- Value(state)
- If state is terminal, return its value
- If $($ player(state $)=$ player 1$)$
- v := -infinity
- For each action
- v := max(v, Value(successor(state, action)))
- Return v
- Else
- v:= infinity

Space? Time?

- For each action
- $\mathrm{v}:=\min (\mathrm{v}$, Value(successor(state, action)))
- Return v

Do we need to see all the leaves?

- Do we need to see the value of the question mark here?

Do we need to see all the leaves?

- Do we need to see the values of the question marks here?

Alpha-beta pruning

- Pruning = cutting off parts of the search tree (because you realize you don't need to look at them)
- When we considered A^{*} we also pruned large parts of the search tree
- Maintain alpha = value of the best option for player 1 along the path so far
- Beta = value of the best option for player 2 along the path so far

Pruning on beta

- Beta at node v is -1
- We know the value of node v is going to be at least 4 , so the -1 route will be preferred
- No need to explore this node further

Pruning on alpha

- Alpha at node w is 6
- We know the value of node w is going to be at most
-1 , so the 6 route will be preferred
- No need to explore this node further

Modifying recursive implementation

to do alpha-beta pruning

- Value(state, alpha, beta)
- If state is terminal, return its value
- If (player(state) $=$ player 1)
- v:=-infinity
- For each action
- v := max(v, Value(successor(state, action), alpha, beta))
- If $v>=$ beta, return v
- alpha := max(alpha, v)
- Return v
- Else
- v:= infinity
- For each action
- v := min(v, Value(successor(state, action), alpha, beta))
- If $\mathrm{v}<=$ alpha, return v
- beta := min(beta, v)
- Return v

Benefits of alpha-beta pruning

- Without pruning, need to examine $O\left(b^{m}\right)$ nodes
- With pruning, depends on which nodes we consider first
- If we choose a random successor, need to examine $O\left(b^{3 m / 4}\right)$ nodes
- If we manage to choose the best successor first, need to examine $O\left(b^{m / 2}\right)$ nodes
- Practical heuristics for choosing next successor to consider get quite close to this
- Can effectively look twice as deep!
- Difference between reasonable and expert play

Repeated states

- As in search, multiple sequences of moves may lead to the same state
- Again, can keep track of previously seen states (usually called a transposition table in this context)
- May not want to keep track of all previously seen states...

Using evaluation functions

- Most games are too big to solve even with alphabeta pruning
- Solution: Only look ahead to limited depth (nonterminal nodes)
- Evaluate nodes at depth cutoff by a heuristic (aka. evaluation function)
- E.g., chess:
- Material value: queen worth 9 points, rook 5, bishop 3, knight 3, pawn 1
- Heuristic: difference between players' material values

Chess example

- White to move

Ki					B		
p							R
			R				
	p						
p		p					
	K						

- Depth cutoff: 3 ply
- Ply = move by one player

Chess (bad) example

- White to move

Ki					B		R
p							
			R				
	p						
p		p					
	K						

- Depth cutoff: 3 ply
- Ply = move by one player

Depth cutoff obscures fact that white R will be captured

Addressing this problem

- Try to evaluate whether nodes are quiescent
-Quiescent = evaluation function will not change rapidly in near future
- Only apply evaluation function to quiescent nodes
- If there is an "obvious" move at a state, apply it before applying evaluation function

Playing against suboptimal players

- Minimax is optimal against other minimax players
- What about against players that play in some other way?

Many-player, general-sum games

of perfect information

- Basic backward induction still works
- No longer called minimax

Games with random moves by "Nature"

- E.g., games with dice (Nature chooses dice roll)
- Backward induction still works...
- Evaluation functions now need to be cardinally right (not just ordinally)
- For two-player zero-sum games with random moves, can we generalize

Games with imperfect information

- Players cannot necessarily see the whole current state of the game
- Card games
- Ridiculously simple poker game:
- Player 1 receives King (winning) or Jack (losing),
- Player 1 can raise or check,
- Player 2 can call or fold
- Dashed lines indicate indistinguishable states
- Backward induction does not work, need random strategies for optimality! (more later in course)

Intuition for need of random strategies

- Suppose my strategy is "raise on King, check on Jack"
- What will you do?
- What is your expected utility?
- What if my strategy is "always raise"?
- What if my strategy is "always raise when given King, 10\% of the time raise when given Jack"?

The state of the art for some games

- Chess:
- 1997: IBM Deep Blue defeats Kasparov
- ... there is still debate about whether computers are really better
- Checkers:
- Computer world champion since 1994
- ... there was still debate about whether computers are really better...
- until 2007: checkers solved optimally by computer
- Go:
- Branching factor really high, seemed out of reach for a while
- AlphaGo now appears superior to humans
- Poker:
- Al now defeating top human players in 2-player ("heads-up") games
- 3+ player case much less well-understood

Is this of any value to society?

- Some of the techniques developed for games have found applications in other domains
- Especially "adversarial" settings
- Real-world strategic situations are usually not two-player, perfect-information, zero-sum, ...
- But game theory does not need any of those
- Example application: security scheduling at airports

