CPS 570: Artificial Intelligence Markov processes and Hidden Markov Models (HMMs)

Instructor: Vincent Conitzer

Motivation

- The Bayes nets we considered so far were static: they referred to a single point in time -E.g., medical diagnosis
- Agent needs to model how the world evolves
- Speech recognition software needs to process speech over time
- Artificially intelligent software assistant needs to keep track of user's intentions over time

Markov processes

- We have time periods $t=0,1,2, \ldots$
- In each period t, the world is in a certain state S_{t}
- The Markov assumption: given $\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}+1}$ is independent of all S_{i} with $i<t$
$-P\left(S_{t+1} \mid S_{1}, S_{2}, \ldots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$
- Given the current state, history tells us nothing more about the future
$\xrightarrow[\text { Typically, all the CPTs are the same: }]{\mathrm{S}_{1}} \rightarrow$
- For all $\mathrm{t}, \mathrm{P}\left(\mathrm{S}_{\mathrm{t}+1}=\mathrm{j} \mid \mathrm{S}_{\mathrm{t}}=\mathrm{i}\right)=\mathrm{a}_{\mathrm{ij}}$ (stationarity assumption)

Weather example

- S_{t} is one of $\{s, c, r\}$ (sun, cloudy, rain)
- Transition probabilities:

- Also need to specify an initial distribution $\mathrm{P}\left(\mathrm{S}_{0}\right)$
- Throughout, assume $\mathrm{P}\left(\mathrm{S}_{0}=s\right)=1$

Weather example...

- What is the probability that it rains two days from now? $\mathrm{P}\left(\mathrm{S}_{2}=\mathrm{r}\right)$
- $P\left(S_{2}=r\right)=P\left(S_{2}=r, S_{1}=r\right)+P\left(S_{2}=r, S_{1}=s\right)+$ $P\left(S_{2}=r, S_{1}=c\right)=.1^{*} .3+.6^{*} .1+.3^{*} .3=.18$

Weather example...

- What is the probability that it rains three days from now?
- Computationally inefficient way: $P\left(S_{3}=r\right)=P\left(S_{3}=\right.$ $\left.r, S_{2}=r, S_{1}=r\right)+P\left(S_{3}=r, S_{2}=r, S_{1}=s\right)+\ldots$
- For n periods into the future, need to sum over 3^{n-1} paths

Weather example...

- More efficient:
- $P\left(S_{3}=r\right)=P\left(S_{3}=r, S_{2}=r\right)+P\left(S_{3}=r, S_{2}=s\right)+P\left(S_{3}=r\right.$, $\left.S_{2}=c\right)=P\left(S_{3}=r \mid S_{2}=r\right) P\left(S_{2}=r\right)+P\left(S_{3}=r \mid S_{2}=s\right) P\left(S_{2}\right.$
$=s)+P\left(S_{3}=r \mid S_{2}=c\right) P\left(S_{2}=c\right)$
- Only hard part: figure out $P\left(S_{2}\right)$
- Main idea: compute distribution $\mathrm{P}\left(\mathrm{S}_{1}\right)$, then $\mathrm{P}\left(\mathrm{S}_{2}\right)$, then $\mathrm{P}\left(\mathrm{S}_{3}\right)$
- Linear in number of periods!

Stationary distributions

- As t goes to infinity, "generally," the distribution $P\left(S_{t}\right)$ will converge to a stationary distribution
- A distribution given by probabilities π_{i} (where i is a state) is stationary if:
$P\left(S_{t}=i\right)=\pi_{i}$ means that $P\left(S_{t+1}=i\right)=\pi_{i}$
- Of course,

$$
P\left(S_{t+1}=i\right)=\Sigma_{j} P\left(S_{t+1}=i, S_{t}=j\right)=\Sigma_{j} P\left(S_{t}=j\right) a_{j i}
$$

- So, stationary distribution is defined by

$$
\Pi_{i}=\Sigma_{\mathrm{j}} \pi_{\mathrm{j}} \mathrm{a}_{\mathrm{ji}}
$$

Computing the stationary distribution

- $\pi_{\mathrm{s}}=.6 \pi_{\mathrm{s}}+.4 \pi_{\mathrm{c}}+.2 \pi_{\mathrm{r}}$
- $\pi_{\mathrm{c}}=.3 \pi_{\mathrm{s}}+.3 \pi_{\mathrm{c}}+.5 \pi_{\mathrm{r}}$
- $\pi_{\mathrm{r}}=.1 \pi_{\mathrm{s}}+.3 \pi_{\mathrm{c}}+.3 \pi_{\mathrm{r}}$

Restrictiveness of Markov models

- Are past and future really independent given current state?
- E.g., suppose that when it rains, it rains for at most 2 days

- Second-order Markov process

- Workaround: change meaning of "state" to events of last 2 days

- Another approach: add more information to the state
- E.g., the full state of the world would include whether the sky is full of water
- Additional information may not be observable
- Blowup of number of states...

Hidden Markov models (HMMs)

- Same as Markov model, except we cannot see the state
- Instead, we only see an observation each period, which depends on the current state

- Still need a transition model: $P\left(S_{t+1}=j \mid S_{t}=i\right)=a_{i j}$
- Also need an observation model: $P\left(O_{t}=k \mid S_{t}=i\right)=b_{i k}$

Weather example extended to HMM

- Transition probabilities:

- Observation: labmate wet or dry
- $\mathrm{b}_{\mathrm{sw}}=.1, \mathrm{~b}_{\mathrm{cw}}=.3, \mathrm{~b}_{\mathrm{rw}}=.8$

HMM weather example: a question

- You have been stuck in the lab for three days (!)
- On those days, your labmate was dry, wet, wet, respectively
-What is the probability that it is now raining outside?
- $\mathrm{P}\left(\mathrm{S}_{2}=\mathrm{r} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}\right)$
- By Bayes' rule, really want to know $\mathrm{P}\left(\mathrm{S}_{2}, \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}\right)$

Solving the question

- Computationally efficient approach: first compute $\mathrm{P}\left(\mathrm{S}_{1}=\mathrm{i}, \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}\right)$ for all states i
- General case: solve for $P\left(S_{t}, O_{0}=o_{0}, O_{1}=o_{1}, \ldots, O_{t}\right.$ $=o_{t}$) for $t=1$, then $t=2, \ldots$ This is called monitoring
- $\mathrm{P}\left(\mathrm{S}_{\mathrm{t}}, \mathrm{O}_{0}=\mathrm{o}_{0}, \mathrm{O}_{1}=\mathrm{o}_{1}, \ldots, \mathrm{O}_{\mathrm{t}}=\mathrm{o}_{\mathrm{t}}\right)=\Sigma_{\mathrm{s}_{\mathrm{t}-1}} \mathrm{P}\left(\mathrm{S}_{\mathrm{t}-1}=\mathrm{s}_{\mathrm{t}-1}\right.$,
$\left.\mathrm{O}_{0}=\mathrm{o}_{0}, \mathrm{O}_{1}=\mathrm{o}_{1}, \ldots, \mathrm{O}_{\mathrm{t}-1}=\mathrm{o}_{\mathrm{t}-1}\right) \mathrm{P}\left(\mathrm{S}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}-1}=\mathrm{s}_{\mathrm{t}-1}\right) \mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\right.$ $\left.\mathrm{o}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}}\right)$

Predicting further out

- You have been stuck in the lab for three days
- On those days, your labmate was dry, wet, wet, respectively
- What is the probability that two days from now it will be raining outside?
- $\mathrm{P}\left(\mathrm{S}_{4}=\mathrm{r} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}\right)$

Predicting further out, continued...

- Want to know: $\mathrm{P}\left(\mathrm{S}_{4}=\mathrm{r} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}\right)$
- Already know how to get: $P\left(S_{2} \mid O_{0}=d, O_{1}=w, O_{2}=w\right)$
- $P\left(S_{3}=r \mid O_{0}=d, O_{1}=w, O_{2}=w\right)=$
$\Sigma_{s_{2}} P\left(S_{3}=r, S_{2}=s_{2} \mid O_{0}=d, O_{1}=w, O_{2}=w\right)$
$\Sigma_{s_{2}} P\left(S_{3}=r \mid S_{2}=s_{2}\right) P\left(S_{2}=s_{2} \mid O_{0}=d, O_{1}=w, O_{2}=w\right)$
- Etc. for S_{4}
- So: monitoring first, then straightforward Markov process updates

Integrating newer information

- You have been stuck in the lab for four days (!)
- On those days, your labmate was dry, wet, wet, dry respectively
- What is the probability that two days ago it was raining outside? $\mathrm{P}\left(\mathrm{S}_{1}=\mathrm{r} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}\right.$ = d)
- Smoothing or hindsight problem

Hindsight problem continued...

- Want: $\mathrm{P}\left(\mathrm{S}_{1}=\mathrm{r} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}, \mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}=\mathrm{d}\right)$
- "Partial" application of Bayes' rule:

$$
\begin{aligned}
& P\left(S_{1}=r \mid O_{0}=d, O_{1}=w, O_{2}=w, O_{3}=d\right)= \\
& P\left(S_{1}=r, O_{2}=w, O_{3}=d \mid O_{0}=d, O_{1}=w\right) / \\
& P\left(O_{2}=w, O_{3}=d \mid O_{0}=d, O_{1}=w\right)
\end{aligned}
$$

- So really want to know $\mathrm{P}\left(\mathrm{S}_{1}, \mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}=\mathrm{d} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}\right)$

Hindsight problem continued...

- Want to know $\mathrm{P}\left(\mathrm{S}_{1}=\mathrm{r}, \mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}=\mathrm{d} \mid \mathrm{O}_{0}=\mathrm{d}, \mathrm{O}_{1}=\mathrm{w}\right)$
- $P\left(S_{1}=r, O_{2}=w, O_{3}=d \mid O_{0}=d, O_{1}=w\right)=$

$$
P\left(S_{1}=r \mid O_{0}=d, O_{1}=w\right) P\left(O_{2}=w, O_{3}=d \mid S_{1}=r\right)
$$

- Already know how to compute $P\left(S_{1}=r \mid O_{0}=d, O_{1}=w\right)$
- Just need to compute $\mathrm{P}\left(\mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}=\mathrm{d} \mid \mathrm{S}_{1}=\mathrm{r}\right)$

- Just need to compute $P\left(O_{2}=w, O_{3}=d \mid S_{1}=r\right)$
- $\mathrm{P}\left(\mathrm{O}_{2}=\mathrm{w}, \mathrm{O}_{3}=\mathrm{d} \mid \mathrm{S}_{1}=\mathrm{r}\right)=$

$$
\begin{aligned}
& \Sigma_{s_{2}} P\left(S_{2}=s_{2}, O_{2}=w, O_{3}=d \mid S_{1}=r\right)= \\
& \Sigma_{s_{2}} P\left(S_{2}=s_{2} \mid S_{1}=r\right) P\left(O_{2}=w \mid S_{2}=s_{2}\right) P\left(O_{3}=d \mid S_{2}=s_{2}\right)
\end{aligned}
$$

- First two factors directly in the model; last factor is a "smaller" problem of the same kind
- Use dynamic programming, backwards from the future
- Similar to forwards approach from the past

Backwards reasoning in general

- Want to know $P\left(O_{k+1}=o_{k+1}, \ldots, O_{t}=o_{t} \mid\right.$
S_{k})
- First compute
$P\left(O_{t}=o_{t} \mid S_{t-1}\right)=\Sigma_{s_{t}} P\left(S_{t}=s_{t} \mid S_{t-1}\right) P\left(O_{t}=o_{t}\right.$ $\mid S_{t}=s_{t}$)
- Then compute
$P\left(O_{t}=o_{t}, O_{t-1}=o_{t-1} \mid S_{t-2}\right)=\Sigma_{s_{t-1}} P\left(S_{t-1}=s_{t-1}\right.$ $\left.\mid S_{t-2}\right) P\left(O_{t-1}=o_{t-1} \mid S_{t-1}=s_{t-1}\right) P\left(O_{t}=o_{t} \mid S_{t-1}\right.$ $=S_{t-1}$)
- Etc.

Variable elimination

- Because all of this is inference in a Bayes net, we can also just do variable elimination

- It's a tree, so variable elimination works well

Dynamic Bayes Nets

- So far assumed that each period has one variable for state, one variable for observation
- Often better to divide state and observation up into multiple variables

edges both within a period, and from one period to the next...

Some interesting things we skipped

- Finding the most likely sequence of states, given observations
-Not necessary equal to the sequence of most likely states! (example?)
- Viterbi algorithm
- Key idea: for each period t, for every state, keep track of most likely sequence to that state at that period, given evidence up to that period
- Continuous variables
- Approximate inference methods
-Particle filtering

