
CPS 570: Artificial Intelligence

Markov decision processes,

POMDPs

Instructor: Vincent Conitzer

Warmup: a Markov process with rewards

s

c r

.1

.2

.6

.3
.4

.3

.3

.5

.3

• We derive some reward R from the weather each
day, but cannot influence it

10

8 1

• How much utility can we expect in the long run?

– Depends on discount factor δ

– Depends on initial state

A key equation

• Conditional expectation:

E(X | Y=y) = Σx x P(X=x|Y=y)

• Let P(s, s’) = P(St+1=s’ | St=s)

• Let v(s) be the (long-term) expected utility from
being in state s now

• v(s) = E(Σt=0 to infinity δt R(St) | S0=s) =

R(s) + Σs’ P(s, s’) E(Σt=1 to infinity δt R(St) | S1=s’)

• But: E(Σt=1 to infinity δt R(St) | S1=s’) =

δE(Σt=0 to infinity δt R(St) | S0=s’) = δv(s’)

• We get: v(s) = R(s) + δΣs’ P(s, s’) v(s’)

Figuring out long-term rewards

s

c r

.1

.2

.6

.3
.4

.3

.3

.5

.3

10

8 1

• Let v(s) be the (long-term) expected utility from
being in state s now

• Let P(s, s’) be the transition probability from s to s’

• We must have: for all s,

v(s) = R(s) + δΣs’ P(s, s’) v(s’)

• E.g., v(c) = 8 + δ(.4v(s) + .3v(c) + .3v(r))
• Solve system of linear equations to obtain values for all states

Iteratively updating values

• If we do not want to solve system of equations…

– E.g., too many states

• … can iteratively update values until convergence

• vi(s) is value estimate after i iterations

• vi(s) = R(s) + δΣs’ P(s, s’) vi-1(s’)

• Will converge to right values

• If we initialize v0=0 everywhere, then vi(s) is
expected utility with only i steps left (finite horizon)

– Dynamic program from the future to the present

– Shows why we get convergence: due to discounting far
future does not contribute much

Markov decision process (MDP)

• Like a Markov process, except every round
we make a decision

• Transition probabilities depend on actions
taken

P(St+1 = s’ | St = s, At = a) = P(s, a, s’)

• Rewards for every state, action pair

R(St = s, At = a) = R(s, a)

– Sometimes people just use R(s); R(s, a) little more
convenient sometimes

• Discount factor δ

Example MDP
• Machine can be in one of three states: good,

deteriorating, broken

• Can take two actions: maintain, ignore

Policies

• No time period is different from the others

• Optimal thing to do in state s should not depend on time
period

– … because of infinite horizon

– With finite horizon, don’t want to maintain machine in last period

• A policy is a function π from states to actions

• Example policy: π(good shape) = ignore, π(deteriorating)
= ignore, π(broken) = maintain

Evaluating a policy

• Key observation: MDP + policy = Markov
process with rewards

• Already know how to evaluate Markov
process with rewards: system of linear
equations

• Gives algorithm for finding optimal policy: try
every possible policy, evaluate

– Terribly inefficient

Bellman equation

• Suppose you are in state s, and you play
optimally from there on

• This leads to expected value v*(s)

• Bellman equation:

v*(s) = maxa [R(s, a) + δΣs’ P(s, a, s’) v*(s’)]

• Given v*, finding optimal policy is easy

Value iteration algorithm for

finding optimal policy

• Iteratively update values for states using
Bellman equation

• vi(s) is our estimate of value of state s after i
updates

• vi+1(s) = maxa [R(s, a) + δΣs’ P(s, a, s’) vi(s’)]

• Will converge

• If we initialize v0=0 everywhere, then vi(s) is
optimal expected utility with only i steps left
(finite horizon)

– Again, dynamic program from the future to the
present

Value iteration example,δ=.9

• v0(G) = v0(D)= v0(B) = 0

• v1(G) = max{R(G,i) + δΣs’ P(G, i, s’) v0(s’), R(G,m) + δΣs’ P(G, m, s’)
v0(s’)} = max{2,1} = 2;

• Similarly, v1(D)=max{2,1} = 2, v1(B) = max{0,-1} = 0

• v2(G) = max{R(G,i) + δΣs’ P(G, i, s’) v1(s’), R(G,m) + δΣs’ P(G, m, s’)
v1(s’)} = max{2 + .9(.5v1(G)+.5v1(D)), 1 + .9(1v1(G))} = 3.8;

• v2(D) = max{2 + .9(.5*2 + .5*0), 1 + .9(.9*2 + .1*2)} = 2.9

• v2(B) = max{0 + .9(1*0), -1 + .9(.8*0 + .2*2)} = 0

• Value for each state (and action at each state) will converge

Policy iteration algorithm for

finding optimal policy

• Easy to compute values given a policy

– No max operator

• Alternate between evaluating policy and
updating policy:

• Solve for function vi based on πi

• πi+1(s) = arg maxa [R(s, a) +δΣs’ P(s, a, s’) vi(s’)]

• Will converge

Policy iteration example,δ=.9

• Initial policy π0: always maintain the machine

• Since we always maintain, the value equations become:

v0(G) = 1+.9v0(G); v0(D) = 1+.9(.9v0(G)+.1v0(D)); v0(B) = -1+.9(.2v0(G)+.8v0(B))

• Solving gives: v0(G) = 10, v0(D)=10, v0(B) = 2.9

• Given these values, expected value for ignoring at G is 2 + .9(.5*10+.5*10)=11,
expected value for maintaining at G is 1 + .9*10 = 10, so ignoring is better;

• For D, ignore gives 2 + .9(.5*10+.5*2.9) =7.8, maintain gives 1 + .9(.9*10+.1*10) =
10, so maintaining is better;

• For B, ignore gives 0 + .9*2.9, maintain gives -1 + .9(.2*10+.8*2.9)= 2.9, so
maintaining is better;

• So, the new policy π1 is to maintain the machine in the deteriorating and broken
states only; solve for the values with π1 , etc. until policy stops changing

Mixing things up

• Do not need to update every state every time

– Makes sense to focus on states where we will
spend most of our time

• In policy iteration, may not make sense to
compute state values exactly

– Will soon change policy anyway

– Just use some value iteration updates (with fixed
policy, as we did earlier)

• Being flexible leads to faster solutions

Partially observable Markov

decision processes (POMDPs)

• Markov process + partial observability = HMM

• Markov process + actions = MDP

• Markov process + partial observability +
actions = HMM + actions = MDP + partial
observability = POMDP

Markov

process

HMM

MDP POMDP

full observability partial observability

no actions

actions

Example POMDP

• Need to specify observations

• E.g., does machine fail on a single job?

• P(fail | good shape) = .1, P(fail | deteriorating)
= .2, P(fail | broken) = .9

– Can also let probabilities depend on action taken

Optimal policies in POMDPs

• Cannot simply useπ(s) because we do not
know s

• We can maintain a probability distribution
over s:

P(St | A1= a1, O1= o1, …, At-1= at-1, Ot-1= ot-1)

• This gives a belief state b where b(s) is our
current probability for s

• Key observation: policy only needs to depend
on b, π(b)

Solving a POMDP as an MDP

on belief states
• If we think of the belief state as the state, then the

state is observable and we have an MDP

(.5, .3, .2)

maintain

observe failure

observe success

(.3, .4, .3)

(.6, .3, .1)

ignore
observe failure

(.2, .2, .6)

observe success

(.4, .2, .2)

disclaimer: did not actually

calculate these numbers…

Reward for an action from a

state = expected reward given

belief state

• Now have a large, continuous belief state…

• Much more difficult

