
CPS 570: Artificial Intelligence

Markov decision processes, 

POMDPs

Instructor: Vincent Conitzer



Warmup: a Markov process with rewards
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• We derive some reward R from the weather each 
day, but cannot influence it
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• How much utility can we expect in the long run?

– Depends on discount factor δ

– Depends on initial state



A key equation  

• Conditional expectation: 

E(X | Y=y) = Σx x P(X=x|Y=y)

• Let P(s, s’) = P(St+1=s’ | St=s)

• Let v(s) be the (long-term) expected utility from 
being in state s now

• v(s) = E(Σt=0 to infinity δt R(St) | S0=s) = 

R(s) + Σs’ P(s, s’) E(Σt=1 to infinity δt R(St) | S1=s’)

• But: E(Σt=1 to infinity δt R(St) | S1=s’) = 

δE(Σt=0 to infinity δt R(St) | S0=s’) = δv(s’)

• We get: v(s) = R(s) + δΣs’ P(s, s’) v(s’)



Figuring out long-term rewards
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• Let v(s) be the (long-term) expected utility from 
being in state s now

• Let P(s, s’) be the transition probability from s to s’

• We must have: for all s,

v(s) = R(s) + δΣs’ P(s, s’) v(s’)

• E.g., v(c) = 8 + δ(.4v(s) + .3v(c) + .3v(r))
• Solve system of linear equations to obtain values for all states



Iteratively updating values  

• If we do not want to solve system of equations…

– E.g., too many states

• … can iteratively update values until convergence

• vi(s) is value estimate after i iterations

• vi(s) = R(s) + δΣs’ P(s, s’) vi-1(s’)

• Will converge to right values

• If we initialize v0=0 everywhere, then vi(s) is 
expected utility with only i steps left (finite horizon)

– Dynamic program from the future to the present

– Shows why we get convergence: due to discounting far 
future does not contribute much



Markov decision process (MDP)

• Like a Markov process, except every round 
we make a decision

• Transition probabilities depend on actions 
taken

P(St+1 = s’ | St = s, At = a) = P(s, a, s’)

• Rewards for every state, action pair

R(St = s, At = a) = R(s, a)

– Sometimes people just use R(s); R(s, a) little more 
convenient sometimes

• Discount factor δ



Example MDP
• Machine can be in one of three states: good, 

deteriorating, broken

• Can take two actions: maintain, ignore



Policies

• No time period is different from the others

• Optimal thing to do in state s should not depend on time 
period

– … because of infinite horizon

– With finite horizon, don’t want to maintain machine in last period

• A policy is a function π from states to actions

• Example policy: π(good shape) = ignore, π(deteriorating) 
= ignore, π(broken) = maintain



Evaluating a policy

• Key observation: MDP + policy = Markov 
process with rewards

• Already know how to evaluate Markov 
process with rewards: system of linear 
equations

• Gives algorithm for finding optimal policy: try 
every possible policy, evaluate

– Terribly inefficient



Bellman equation

• Suppose you are in state s, and you play 
optimally from there on

• This leads to expected value v*(s)

• Bellman equation:

v*(s) = maxa [R(s, a) + δΣs’ P(s, a, s’) v*(s’)]

• Given v*, finding optimal policy is easy



Value iteration algorithm for 

finding optimal policy

• Iteratively update values for states using 
Bellman equation

• vi(s) is our estimate of value of state s after i 
updates

• vi+1(s) = maxa [R(s, a) + δΣs’ P(s, a, s’) vi(s’)]

• Will converge

• If we initialize v0=0 everywhere, then vi(s) is 
optimal expected utility with only i steps left 
(finite horizon)

– Again, dynamic program from the future to the 
present



Value iteration example,δ=.9

• v0(G) = v0(D)= v0(B) = 0

• v1(G) = max{R(G,i) + δΣs’ P(G, i, s’) v0(s’), R(G,m) + δΣs’ P(G, m, s’) 
v0(s’)} = max{2,1} = 2; 

• Similarly, v1(D)=max{2,1} = 2, v1(B) = max{0,-1} = 0

• v2(G) = max{R(G,i) + δΣs’ P(G, i, s’) v1(s’), R(G,m) + δΣs’ P(G, m, s’) 
v1(s’)} = max{2 + .9(.5v1(G)+.5v1(D)), 1 + .9(1v1(G))} = 3.8;

• v2(D) = max{2 + .9(.5*2 + .5*0), 1 + .9(.9*2 + .1*2)} = 2.9

• v2(B) = max{0 + .9(1*0), -1 + .9(.8*0 + .2*2)} = 0

• Value for each state (and action at each state) will converge



Policy iteration algorithm for 

finding optimal policy

• Easy to compute values given a policy

– No max operator

• Alternate between evaluating policy and 
updating policy:

• Solve for function vi based on πi

• πi+1(s) = arg maxa [R(s, a) +δΣs’ P(s, a, s’) vi(s’)]

• Will converge



Policy iteration example,δ=.9

• Initial policy π0: always maintain the machine

• Since we always maintain, the value equations become:

v0(G) = 1+.9v0(G); v0(D) = 1+.9(.9v0(G)+.1v0(D)); v0(B) = -1+.9(.2v0(G)+.8v0(B))

• Solving gives: v0(G) = 10, v0(D)=10, v0(B) = 2.9

• Given these values, expected value for ignoring at G is 2 + .9(.5*10+.5*10)=11, 
expected value for maintaining at G is 1 + .9*10 = 10, so ignoring is better; 

• For D, ignore gives 2 + .9(.5*10+.5*2.9) =7.8, maintain gives 1 + .9(.9*10+.1*10) = 
10, so maintaining is better;

• For B, ignore gives 0 + .9*2.9, maintain gives -1 + .9(.2*10+.8*2.9)= 2.9, so 
maintaining is better;

• So, the new policy π1 is to maintain the machine in the deteriorating and broken 
states only; solve for the values with π1 , etc. until policy stops changing



Mixing things up

• Do not need to update every state every time

– Makes sense to focus on states where we will 
spend most of our time

• In policy iteration, may not make sense to 
compute state values exactly

– Will soon change policy anyway

– Just use some value iteration updates (with fixed 
policy, as we did earlier)

• Being flexible leads to faster solutions



Partially observable Markov 

decision processes (POMDPs)

• Markov process + partial observability = HMM

• Markov process + actions = MDP

• Markov process + partial observability + 
actions = HMM + actions = MDP + partial 
observability = POMDP

Markov 

process

HMM

MDP POMDP

full observability partial observability

no actions

actions



Example POMDP

• Need to specify observations

• E.g., does machine fail on a single job?

• P(fail | good shape) = .1, P(fail | deteriorating) 
= .2, P(fail | broken) = .9

– Can also let probabilities depend on action taken



Optimal policies in POMDPs

• Cannot simply useπ(s) because we do not 
know s

• We can maintain a probability distribution 
over s:

P(St | A1= a1, O1= o1, …, At-1= at-1, Ot-1= ot-1)

• This gives a belief state b where b(s) is our 
current probability for s

• Key observation: policy only needs to depend 
on b, π(b)



Solving a POMDP as an MDP 

on belief states
• If we think of the belief state as the state, then the 

state is observable and we have an MDP

(.5, .3, .2)

maintain

observe failure

observe success

(.3, .4, .3)

(.6, .3, .1)

ignore
observe failure

(.2, .2, .6)

observe success

(.4, .2, .2)

disclaimer: did not actually 

calculate these numbers…

Reward for an action from a 

state = expected reward given 

belief state

• Now have a large, continuous belief state…

• Much more difficult


