CPS 570: Artificial Intelligence

Markov decision processes,
POMDPs

Instructor: Vincent Conitzer



Warmup: a Markov process with rewards

 We derive some reward R from the weather each
day, but cannot influence it

* How much utility can we expect in the long run?
— Depends on discount factor 0
— Depends on initial state



A key equation

Conditional expectation:
E(X|Y=y) =2, x P(X=x]Y=y)
Let P(s, s') = P(S(,1=s" | S{=S)

Let v(s) be the (long-term) expected utility from
being in state s now

V(S) = E(21=0 1o infinity O'R(Sy) | Sp=s) =

R(S) v zs’ P(S, S,) E(zt=1 to infinity 6t R(St) | S1=S,)
But: E(2-/ infinity O'R(Sy) | S4=8') =

OE (-9 1o infinity O'R(Sy) | Sp=s’) = dv(s’)

We get: v(s) = R(s) + 02, P(s, s’) v(s’)



Figuring out long-term rewards

* Let v(s) be the (long-term) expected utility from
being In state s now

» Let P(s, s’) be the transition probability from sto s

 \WWe must have: for all s,

v(s) = R(s) + 02, P(s, s’) v(s')

b

. E.g., v(c)=8+ 6(.4\/(55) + .3v(c) + .3v(r))

« Solve system of linear equations to obtain values for all states



lteratively updating values

If we do not want to solve system of equations...
— E.g., too many states

... can iteratively update values until convergence
vi(s) is value estimate after i iterations

vi(8) = R(s) + 02 P(s, 8') vi4(s)

Will converge to right values

If we initialize v,=0 everywhere, then v,(s) is
expected utility with only i steps left (finite horizon)
— Dynamic program from the future to the present

— Shows why we get convergence: due to discounting far
future does not contribute much



Markov decision process (MDP)

Like a Markov process, except every round
we make a decision

Transition probabilities depend on actions
taken

P(Si,1=s | Si=s,A=a)=P(s, a, s)
Rewards for every state, action pair
R(S;=s,A=a)=R(s, a)

— Sometimes people just use R(s); R(s, a) little more
convenient sometimes

Discount factor o



Example MDP

* Machine can be in one of three states: good,
deteriorating, broken

» Can take two actions: maintain, ignore

5 5

good shape ignore (2) . ) deteriorating

1] /maintain (1) .5 |/ ignore (2)

maintain (-1)



Policies

5 5
gOOd Shape <_ 'gnore (2) maintain (1)

deteriorating

No time period is different from the others

Optimal thing to do in state s should not depend on time
period

— ... because of infinite horizon

— With finite horizon, don’t want to maintain machine in last period

A policy is a function 1T from states to actions

Example policy: m(good shape) = ignore, tr(deteriorating)
= ignore, t1(broken) = maintain



Evaluating a policy

» Key observation: MDP + policy = Markov
process with rewards

* Already know how to evaluate Markov
process with rewards: system of linear
equations

 Gives algorithm for finding optimal policy: try
every possible policy, evaluate
— Terribly inefficient



Bellman equation

* Suppose you are in state s, and you play
optimally from there on

* This leads to expected value v*(s)
» Bellman equation:

v*(s) = max, [R(s, a) + 82, P(s, a, s’) v¥(s')]
* Given v*, finding optimal policy is easy



Value iteration algorithm for
finding optimal policy

Iteratively update values for states using
Bellman equation

Vvi(s) is our estimate of value of state s after i
updates

V..4(S) = max, [R(s, a) + 62, P(s, a, s’) vi(s')]
Will converge

If we initialize v,=0 everywhere, then vi(s) is
optimal expected utility with only i steps left
(finite horizon)

— Again, dynamic program from the future to the
present



Value iteration example,0=.9

deteriorating

.5

i nore (2
J @) maintain (1)

9

Vo(G) = vo(D)=ve(B) =0

v4(G) = max{R(G,i) + 02, P(G, i, S") vy(s’), R(G,m) + 62, P(G, m, s’)
Vo(s')} = max{2,1} = 2;

Similarly, v,(D)=max{2,1} = 2, v,(B) = max{0,-1} =0

V,(G) = max{R(G,i) + 8%, P(G, i, §') v4(s’), R(G,m) + 8%, P(G, m, ")
V4(s')} = max{2 + .9(.dv,(G)+.5v4(D)), 1 +.9(1v,(G))} = 3.8;

V,(D) = max{2 + .9(.5"2 + .5"0), 1 + .9(.9*2 + .1*2)} = 2.9
V,(B) = max{0 + .9(1*0), -1 + .9(.8"0 + .2*2)} =0
Value for each state (and action at each state) will converge



Policy iteration algorithm for
finding optimal policy

« Easy to compute values given a policy
— No max operator

 Alternate between evaluating policy and
updating policy:

 Solve for function v, based on T,

* T,4(S) =arg max, [R(s, a) +02 P(s, a, s’) vi(s')]

* Will converge



Policy iteration example,0=.9

deteriorating

5 5

ighore (2
J ) maintain (1)

9

Initial policy 1m,: always maintain the machine

Since we always maintain, the value equations become:

Vo(G) = 1+.9v((G); vo(D) = 1+.9(.9vy(G)+.1v4(D)); vo(B) = -1+.9(.2v((G)+.8vy(B))
Solving gives: vy(G) = 10, vy(D)=10, vy(B) = 2.9

Given these values, expected value for ignoring at G is 2 + .9(.5*10+.5*10)=11,
expected value for maintaining at Gis 1 + .9*10 = 10, so ignoring is better;

For D, ignore gives 2 + .9(.5*10+.5*2.9) =7.8, maintain gives 1 + .9(.9*10+.1*10) =
10, so maintaining is better;

For B, ignore gives 0 + .9*2.9, maintain gives -1 + .9(.2*10+.8*2.9)= 2.9, so
maintaining is better;

So, the new policy 11, is to maintain the machine in the deteriorating and broken
states only; solve for the values with 11, , etc. until policy stops changing



Mixing things up

* Do not need to update every state every time

— Makes sense to focus on states where we will
spend most of our time

* |n policy iteration, may not make sense to
compute state values exactly
— WIll soon change policy anyway

— Just use some value iteration updates (with fixed
policy, as we did earlier)

* Being flexible leads to faster solutions



Partially observable Markov
decision processes (POMDPs)

* Markov process + partial observability = HMM
 Markov process + actions = MDP

* Markov process + partial observability +
actions = HMM + actions = MDP + partial
observability = POMDP

full observability  partial observability

Markov HMM
process

actions MDP POMDP

no actions




Example POMDP

deteriorating

.5 |/ ignhore (2)

* Need to specify observations
* E.g., does machine fail on a single job?

» P(fail | good shape) = .1, P(fall | deteriorating)
= .2, P(fail | broken) = .9

— Can also let probabilities depend on action taken



Optimal policies in POMDPs

« Cannot simply useTtr(s) because we do not
Know s

* WWe can maintain a probability distribution
oVer s:

P(S;|A=a;, O= 04, ..., A1= Ay, Op 4= 0q)

* This gives a belief state b where b(s) is our
current probability for s

» Key observation: policy only needs to depend
on b, m(b)



Solving a POMDP as an MDP
on belief states

* |f we think of the belief state as the state, then the

state Is observable and we have an MDP
(.3, .4, .3)

observe failure

disclaimer: did not actually

maintain observe success calculate these numbers...

(95 oy ) (.6,.3,.1)

(2,.2,.6)

ignore . Reward for an action from a

observe failure .
state = expected reward given

belief state

observe success

(4,.2,.2)
* Now have a large, continuous belief state...

« Much more difficult



