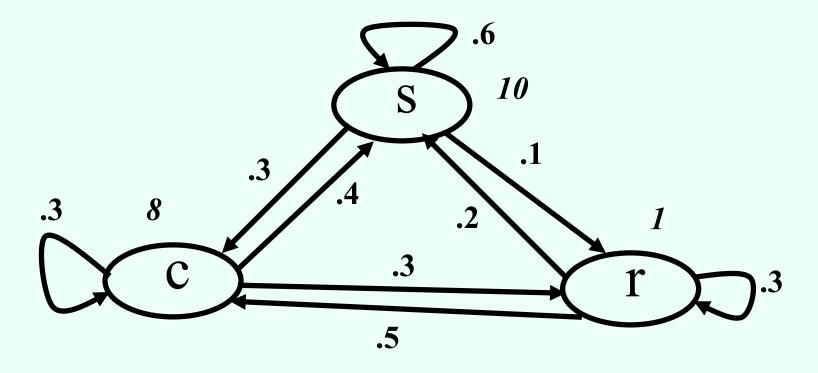
CPS 570: Artificial Intelligence Markov decision processes, POMDPs

Instructor: Vincent Conitzer

Warmup: a Markov process with rewards

 We derive some reward R from the weather each day, but cannot influence it



- How much utility can we expect in the long run?
 - Depends on discount factor δ
 - Depends on initial state

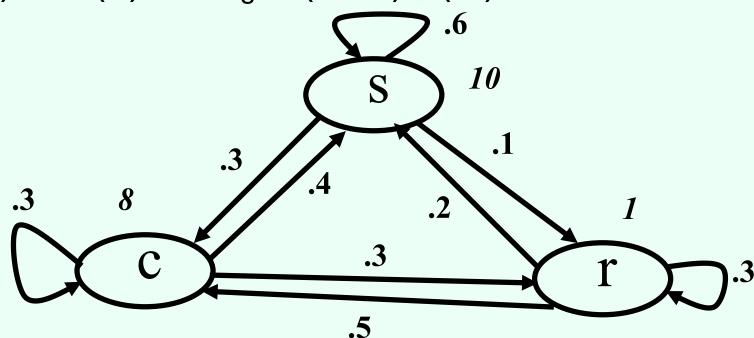
A key equation

- Conditional expectation:
 - $E(X \mid Y=y) = \Sigma_x \times P(X=x|Y=y)$
- Let $P(s, s') = P(S_{t+1}=s' | S_t=s)$
- Let v(s) be the (long-term) expected utility from being in state s now
- $v(s) = E(\Sigma_{t=0 \text{ to infinity}} \delta^t R(S_t) | S_0 = s) = R(s) + \Sigma_{s'} P(s, s') E(\Sigma_{t=1 \text{ to infinity}} \delta^t R(S_t) | S_1 = s')$
- But: $E(\Sigma_{t=1 \text{ to infinity}} \delta^t R(S_t) | S_1 = s') = \delta E(\Sigma_{t=0 \text{ to infinity}} \delta^t R(S_t) | S_0 = s') = \delta v(s')$
- We get: $v(s) = R(s) + \delta \Sigma_{s'} P(s, s') v(s')$

Figuring out long-term rewards

- Let v(s) be the (long-term) expected utility from being in state s now
- Let P(s, s') be the transition probability from s to s'
- We must have: for all s,

$$v(s) = R(s) + \delta \Sigma_{s'} P(s, s') v(s')$$



- E.g., $v(c) = 8 + \delta(.4v(s) + .3v(c) + .3v(r))$
- Solve system of linear equations to obtain values for all states

Iteratively updating values

- If we do not want to solve system of equations...
 - E.g., too many states
- ... can iteratively update values until convergence
- v_i(s) is value estimate after i iterations
- $v_i(s) = R(s) + \delta \Sigma_{s'} P(s, s') v_{i-1}(s')$
- Will converge to right values
- If we initialize $v_0=0$ everywhere, then $v_i(s)$ is expected utility with only i steps left (finite horizon)
 - Dynamic program from the future to the present
 - Shows why we get convergence: due to discounting far future does not contribute much

Markov decision process (MDP)

- Like a Markov process, except every round we make a decision
- Transition probabilities depend on actions taken

$$P(S_{t+1} = s' | S_t = s, A_t = a) = P(s, a, s')$$

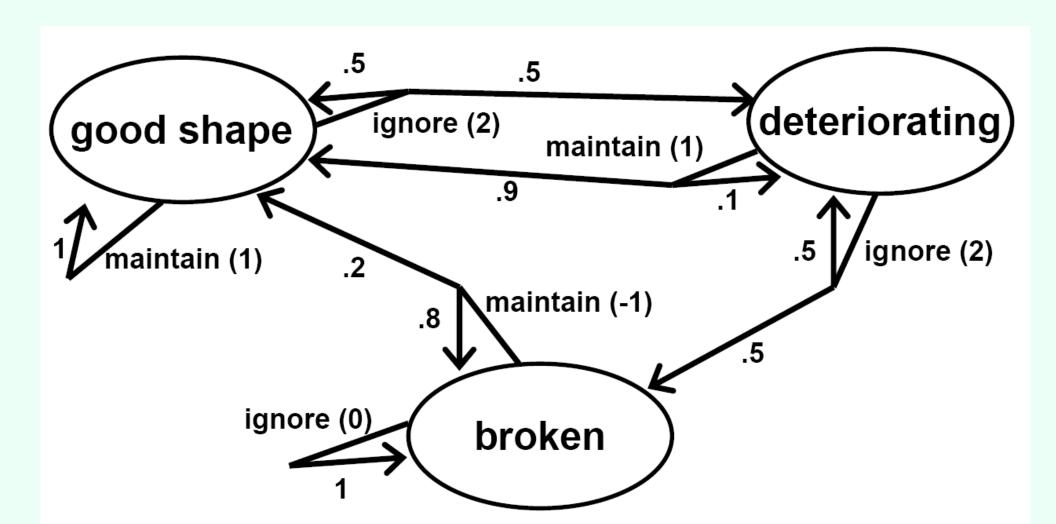
Rewards for every state, action pair

$$R(S_t = s, A_t = a) = R(s, a)$$

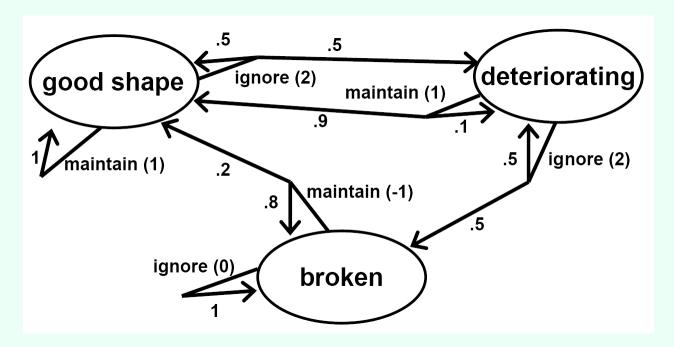
- Sometimes people just use R(s); R(s, a) little more convenient sometimes
- Discount factor δ

Example MDP

- Machine can be in one of three states: good, deteriorating, broken
- Can take two actions: maintain, ignore



Policies



- No time period is different from the others
- Optimal thing to do in state s should not depend on time period
 - ... because of infinite horizon
 - With finite horizon, don't want to maintain machine in last period
- A policy is a function π from states to actions
- Example policy: π(good shape) = ignore, π(deteriorating)
 = ignore, π(broken) = maintain

Evaluating a policy

- Key observation: MDP + policy = Markov process with rewards
- Already know how to evaluate Markov process with rewards: system of linear equations
- Gives algorithm for finding optimal policy: try every possible policy, evaluate
 - Terribly inefficient

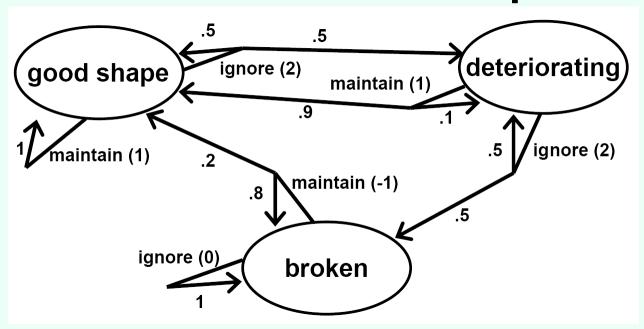
Bellman equation

- Suppose you are in state s, and you play optimally from there on
- This leads to expected value v*(s)
- Bellman equation:
 - $v^*(s) = \max_a [R(s, a) + \delta \Sigma_{s'} P(s, a, s') v^*(s')]$
- Given v*, finding optimal policy is easy

Value iteration algorithm for finding optimal policy

- Iteratively update values for states using Bellman equation
- v_i(s) is our estimate of value of state s after i updates
- $v_{i+1}(s) = \max_{a} [R(s, a) + \delta \Sigma_{s'} P(s, a, s') v_{i}(s')]$
- Will converge
- If we initialize v_0 =0 everywhere, then v_i (s) is optimal expected utility with only i steps left (finite horizon)
 - Again, dynamic program from the future to the present

Value iteration example, δ=.9

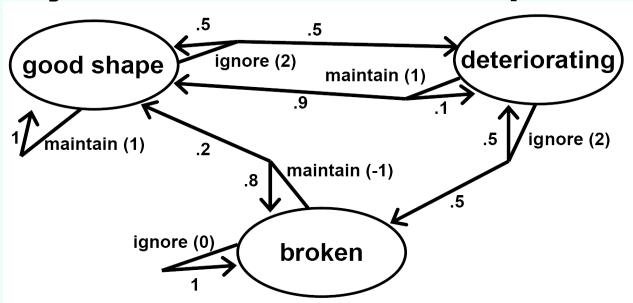


- $v_0(G) = v_0(D) = v_0(B) = 0$
- $v_1(G) = \max\{R(G,i) + \delta\Sigma_{s'} P(G, i, s') v_0(s'), R(G,m) + \delta\Sigma_{s'} P(G, m, s') v_0(s')\} = \max\{2,1\} = 2;$
- Similarly, $v_1(D)=\max\{2,1\}=2$, $v_1(B)=\max\{0,-1\}=0$
- $v_2(G) = \max\{R(G,i) + \delta\Sigma_{s'}P(G, i, s') v_1(s'), R(G,m) + \delta\Sigma_{s'}P(G, m, s') v_1(s')\} = \max\{2 + .9(.5v_1(G) + .5v_1(D)), 1 + .9(1v_1(G))\} = 3.8;$
- $v_2(D) = max\{2 + .9(.5*2 + .5*0), 1 + .9(.9*2 + .1*2)\} = 2.9$
- $v_2(B) = max\{0 + .9(1*0), -1 + .9(.8*0 + .2*2)\} = 0$
- Value for each state (and action at each state) will converge

Policy iteration algorithm for finding optimal policy

- Easy to compute values given a policy
 - No max operator
- Alternate between evaluating policy and updating policy:
- Solve for function v_i based on π_i
- $\pi_{i+1}(s) = \arg \max_{a} [R(s, a) + \delta \Sigma_{s'} P(s, a, s') v_{i}(s')]$
- Will converge

Policy iteration example, δ =.9



- Initial policy π_0 : always maintain the machine
- Since we always maintain, the value equations become:

$$v_0(G) = 1 + .9v_0(G); v_0(D) = 1 + .9(.9v_0(G) + .1v_0(D)); v_0(B) = -1 + .9(.2v_0(G) + .8v_0(B))$$

- Solving gives: $v_0(G) = 10$, $v_0(D) = 10$, $v_0(B) = 2.9$
- Given these values, expected value for ignoring at G is 2 + .9(.5*10+.5*10)=11, expected value for maintaining at G is 1 + .9*10 = 10, so ignoring is better;
- For D, ignore gives 2 + .9(.5*10+.5*2.9) =7.8, maintain gives 1 + .9(.9*10+.1*10) = 10, so maintaining is better;
- For B, ignore gives 0 + .9*2.9, maintain gives -1 + .9(.2*10+.8*2.9)= 2.9, so maintaining is better;
- So, the new policy π_1 is to maintain the machine in the deteriorating and broken states only; solve for the values with π_1 , etc. until policy stops changing

Mixing things up

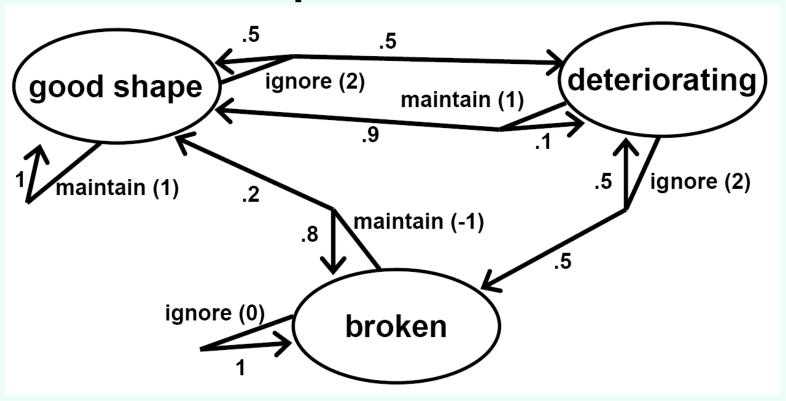
- Do not need to update every state every time
 - Makes sense to focus on states where we will spend most of our time
- In policy iteration, may not make sense to compute state values exactly
 - Will soon change policy anyway
 - Just use some value iteration updates (with fixed policy, as we did earlier)
- Being flexible leads to faster solutions

Partially observable Markov decision processes (POMDPs)

- Markov process + partial observability = HMM
- Markov process + actions = MDP
- Markov process + partial observability + actions = HMM + actions = MDP + partial observability = POMDP

	full observability	partial observability
no actions	Markov	НММ
	process	
actions	MDP	POMDP

Example POMDP



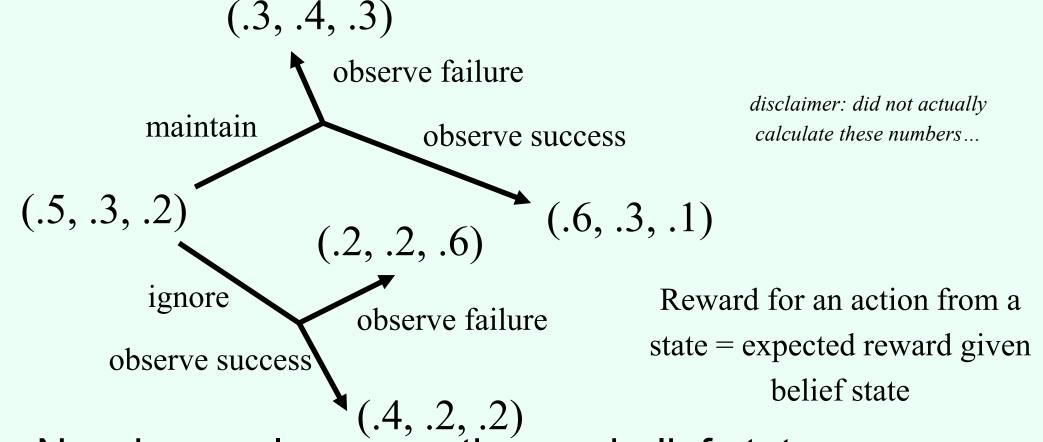
- Need to specify observations
- E.g., does machine fail on a single job?
- P(fail | good shape) = .1, P(fail | deteriorating)= .2, P(fail | broken) = .9
 - Can also let probabilities depend on action taken

Optimal policies in POMDPs

- Cannot simply useπ(s) because we do not know s
- We can maintain a probability distribution over s:
 - $P(S_t | A_1 = a_1, O_1 = o_1, ..., A_{t-1} = a_{t-1}, O_{t-1} = o_{t-1})$
- This gives a belief state b where b(s) is our current probability for s
- Key observation: policy only needs to depend on b, π(b)

Solving a POMDP as an MDP on belief states

• If we think of the belief state as the state, then the state is observable and we have an MDP



- Now have a large, continuous belief state...
- Much more difficult