CPS 570: Artificial Intelligence

More search: When the path to the solution doesn't matter

Instructor: Vincent Conitzer

Search where the path doesn't matter

- So far, looked at problems where the path was the solution
- Traveling on a graph
- Eights puzzle
- However, in many problems, we just want to find a goal state
- Doesn't matter how we get there

Queens puzzle

- Place eight queens on a chessboard so that no two attack each other

				Q			
		Q					
Q							
	Q					Q	
	Q						
							Q
					Q		
			Q				

Search formulation of the queens puzzle

- Successors: all valid ways of placing additional queen on the board; goal: eight queens placed

Search formulation of the queens puzzle

- Successors: all valid ways of placing a queen in the next column; goal: eight queens placed

- Defined by:
- A set of variables $x_{1}, x_{2}, \ldots, x_{n}$
- A domain D_{i} for each variable x_{i}
- Constraints $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{m}}$
- A constraint is specified by
- A subset (often, two) of the variables
- All the allowable joint assignments to those variables
- Goal: find a complete, consistent assignment
- Queens problem: (other examples in next slides)
$-x_{i}$ in $\{1, \ldots, 8\}$ indicates in which row in the ith column to place a queen
- For example, constraint on x_{1} and $x_{2}:\{(1,3),(1,4),(1,5)$, $(1,6),(1,7),(1,8),(2,4),(2,5), \ldots,(3,1),(3,5), \ldots \ldots\}$

Graph coloring

- Fixed number of colors; no two adjacent nodes can share a color

Satisfiability

- Formula in conjunctive normal form:
(x_{1} OR x_{2} OR NOT $\left(\mathrm{x}_{4}\right)$) AND ($\operatorname{NOT}\left(\mathrm{x}_{2}\right)$ OR NOT($\left.x_{3}\right)$) AND ...
- Label each variable x_{j} as true or false so that the formula becomes true

Constraint hypergraph:
each hyperedge
represents a constraint

Cryptarithmetic puzzles

TWO

TWO+
FOUR
E.g., setting $F=1, O=4, R=8, T=7, W=3$, $U=6$ gives $734+734=1468$

Cryptarithmetic puzzles...

T W O
T W O + Trick: introduce auxiliary variables X, Y

$$
\begin{aligned}
& W+W+X=10 Y+U \\
& T+T+Y=10 F+O
\end{aligned}
$$

$$
O+O=10 X+R
$$

Generic approaches to solving CSPs

- State: some variables assigned, others not assigned
- Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
- Can check for consistency when expanding
- How many leaves do we get in the worst case?
- CSPs satisfy commutativity: order in which actions applied does not matter
- Better idea: only consider assignments for a single variable at a time
- How many leaves?

Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in $\{0,1\}$

- Can you prove that this never increases the size of the tree?

A generic recursive search algorithm

- Search(assignment, constraints)
- If assignment is complete, return it
- Choose an unassigned variable x
- For every value v in x 's domain, if setting x to v in assignment does not violate constraints:
- Set x to v in assignment
- result := Search(assignment, constraints)
- If result != failure return result
- Unassign x in assignment
- Return failure

Keeping track of remaining possible values

- For every variable, keep track of which values are still possible

				Q	x	x	x
		Q			x	x	x
Q					x	x	x
							x
	Q				x	x	x
					x	x	
							x
			Q		x	x	x

only one possibility for last column; might as well fill in

now only one left for other two columns

done!
(no real branching needed!)

- General heuristic: branch on variable with fewest values remaining

Arc consistency

- Take two variables connected by a constraint
- Is it true that for every remaining value d of the first variable, there exists some value d ' of the other variable so that the constraint is satisfied?
- If so, we say the arc from the first to the second variable is consistent
- If not, can remove the value d
- General concept: constraint propagation

Is the arc from the fifth to the eighth column consistent?
What about the arc from the eighth to the fifth?

Maintaining arc consistency

- Maintain a queue Q of all ordered pairs of variables with a constraint (arcs) that need to be checked
- Take a pair (x, y) from the queue
- For every value v in x 's domain, check if there is some value w in y 's domain so that $x=v, y=w$ is consistent
- If not, remove v from x 's domain
- If anything was removed from x 's domain, add every arc (z, x) to Q
- Continue until Q is empty
- Runtime?
- n variables, d values per domain
- $O\left(n^{2}\right)$ arcs;
- each arc is added to the queue at most d times;
- consistency of an arc can be checked with d^{2} lookups in the constraint's table;
- so $O\left(n^{2} d^{3}\right)$ lookups
- Can we do better?

Maintaining arc consistency (2)

- For every $\operatorname{arc}(x, y)$, for every value v for x, maintain the number $n((x, y), v)$ of remaining values for y that are consistent with $x=v$
- Every time that some $n((x, y), v)=0$,
- remove v from x 's domain;
- for every $\operatorname{arc}(z, x)$, for every value w for z, if $(x=v, z=w)$ is consistent with the constraint, reduce $n((z, x), w)$ by 1
- Runtime:
- for every arc (z, x) (n^{2} of them), a value is removed from x 's domain at most d times;
- each time we have to check for at most d of z 's values whether it is consistent with the removed value for x;
- so $O\left(n^{2} d^{2}\right)$ lookups

An example where arc

consistency fails

(B, C) in $\{(0,0),(1,1)\}$

- $A=B, B=C, C \neq A$ - obviously inconsistent - ~Moebius band
- However, arc consistency cannot eliminate anything

Tree-structured constraint graphs

- Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)

- Dynamic program for solving this (linear in \#variables):
- Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
- Equivalently: apply arc consistency from each parent to its children, starting from the bottom
- If no domain becomes empty, once we reach the top, easy to fill in solution

Generalizations of the tree-based approach

- What if our constraint graph is "almost" a tree?

- A cycle cutset is a set of variables whose removal results in a tree (or forest)
- E.g. $\left\{X_{1}\right\},\left\{X_{6}\right\},\left\{X_{2}, X_{3}\right\},\left\{X_{2}, X_{4}\right\},\left\{X_{3}, X_{4}\right\}$
- Simple algorithm: for every internally consistent assignment to the cutset, solve the remaining tree as before (runtime?)
- Graphs of bounded treewidth can also be solved in polynomial time (won't define these here)

A different approach: optimization

- Let's say every way of placing 8 queens on a board, one per column, is feasible
- Now we introduce an objective: minimize the number of pairs of queens that attack each other
- More generally, minimize the number of violated constraints
- Pure optimization

Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
- Successor: move one queen within its column

4 attacking pairs

3 attacking pairs

2 attacking pairs
no more
improvements

- Local search can get stuck in a local optimum

Avoiding getting stuck with local search

- Random restarts: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
- Not always easy to generate a random state
- Will eventually succeed (why?)
- Simulated annealing:
- Generate a random successor (possibly worse than current state)
- Move to that successor with some probability that is sharply decreasing in the badness of the state
- Also, over time, as the "temperature decreases," probability of bad moves goes down

Constraint optimization

- Like a CSP, but with an objective
- E.g., minimize number of violated constraints
- Another example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)
- Can use all our techniques from before: heuristics, A*, IDA*, ...
- Also popular: depth-first branch-and-bound
- Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
- Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far

Minimize \#violated diagonal constraints

- Cost of a node: \#violated diagonal constraints so far
- No heuristic (matter of definition; could just as well say that violated constraints so far is the heuristic and interior nodes have no cost)

$$
\operatorname{cost}=0
$$

Depth first branch and bound will find a suboptimal solution here first (no way to tell at this point this is worse than right node)
 (=iterative lengthening here) will never explore this node

Linear programs: example

- We make reproductions of two paintings

$$
\text { maximize } 3 x+2 y
$$

subject to

$$
4 x+2 y \leq 16
$$

- Painting 1 sells for $\$ 30$, painting 2

$$
x+2 y \leq 8
$$ sells for $\$ 20$

$$
x+y \leq 5
$$

- Painting 1 requires 4 units of blue, 1 green, 1 red

$$
x \geq 0
$$

- Painting 2 requires 2 blue, 2 green, 1
$y \geq 0$ red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$

Modified LP

maximize $3 x+2 y$
Optimal solution: $x=2.5$,
subject to

$$
\begin{array}{cc}
4 x+2 y \leq 45 & \text { Solution value }=7.5+5= \\
x+2 y \leq 8 & 12.5 \\
x+y \leq 5 &
\end{array}
$$

$$
y=2.5
$$

$$
x \geq 0
$$

Half paintings?

$$
y \geq 0
$$

Integer (linear) program

 maximize $3 x+2 y$$$
\begin{gathered}
\text { subject to } \\
\begin{array}{c}
4 x+2 y \leq 15 \\
x+2 y \leq 8 \\
x+y \leq 5
\end{array}
\end{gathered}
$$

$x \geq 0$, integer ${ }^{2}$
$y \geq 0$, integer

Mixed integer (linear) program

 maximize $3 x+2 y$ subject to $4 x+2 y \leq 15$$$
x+2 y \leq 8
$$

$$
x+y \leq 5
$$

$$
x \geq 0
$$

$y \geq 0$, integer

Solving linear/integer programs

- Linear programs can be solved efficiently
- Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
- Quite easy to model many standard NP-complete problems as integer programs (try it!)
- Search type algorithms such as branch and bound
- Standard packages for solving these
- GNU Linear Programming Kit, CPLEX, ...
- LP relaxation of (M)IP: remove integrality constraints
- Gives upper bound on MIP (~admissible heuristic)

Satisfiability as an integer program

becomes
for all $\mathrm{x}_{\mathrm{j}}, 0 \leq \mathrm{x}_{\mathrm{j}} \leq 1, \mathrm{x}_{\mathrm{j}}$ integer (shorthand: x_{j} in $\{0,1\}$)
$x_{1}+x_{2}+\left(1-x_{4}\right) \geq 1$
$\left(1-x_{2}\right)+\left(1-x_{3}\right) \geq 1$

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!

Solving the integer program with DFS branch and bound

Again with a more fortunate choice

