
CPS 570: Artificial Intelligence

More search:

When the path to the solution

doesn’t matter

Instructor: Vincent Conitzer

Search where the path doesn’t matter

• So far, looked at problems where the path was the

solution

– Traveling on a graph

– Eights puzzle

• However, in many problems, we just want to find a

goal state

– Doesn’t matter how we get there

Queens puzzle

Q

Q

Q

Q

Q

Q

Q

Q

• Place eight queens on a chessboard so that no

two attack each other

Search formulation of the queens puzzle
• Successors: all valid ways of placing additional queen on

the board; goal: eight queens placed
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

How big is this tree? How

many leaves?

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Search formulation of the queens puzzle
• Successors: all valid ways of placing a queen in the next

column; goal: eight queens placed

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Search tree size?

What kind of search is best?

Constraint satisfaction problems (CSPs)

• Defined by:

– A set of variables x1, x2, …, xn

– A domain Di for each variable xi

– Constraints c1, c2, …, cm

• A constraint is specified by

– A subset (often, two) of the variables

– All the allowable joint assignments to those variables

• Goal: find a complete, consistent assignment

• Queens problem: (other examples in next slides)

– xi in {1, …, 8} indicates in which row in the ith column to

place a queen

– For example, constraint on x1 and x2: {(1,3), (1,4), (1,5),

(1,6), (1,7), (1,8), (2,4), (2,5), …, (3,1), (3,5), … …}

Graph coloring

• Fixed number of colors; no two adjacent

nodes can share a color

A

B C

D

red

red

blue green

Satisfiability

• Formula in conjunctive normal form:

(x1 OR x2 OR NOT(x4)) AND (NOT(x2) OR

NOT(x3)) AND …

– Label each variable xj as true or false so that

the formula becomes true

X1

X3 X4

X2Constraint hypergraph:

each hyperedge

represents a constraint

Cryptarithmetic puzzles

T W O

T W O +

F O U R

E.g., setting F = 1, O = 4, R = 8, T = 7, W = 3,

U = 6 gives 734+734=1468

Cryptarithmetic puzzles…

T W O

T W O +

F O U R

Trick: introduce auxiliary

variables X, Y

O + O = 10X + R

W + W + X = 10Y + U

T + T + Y = 10F + O

X Y

O R W U T F

also need pairwise constraints

between original variables if they

are supposed to be different

Generic approaches to solving CSPs

• State: some variables assigned, others not

assigned

• Naïve successors definition: any way of assigning

a value to an unassigned variable results in a

successor

– Can check for consistency when expanding

– How many leaves do we get in the worst case?

• CSPs satisfy commutativity: order in which actions

applied does not matter

• Better idea: only consider assignments for a single

variable at a time

– How many leaves?

Choice of variable to branch on is still flexible!

• Do not always need to choose same variable at same level

• Each of variables A, B, C takes values in {0,1}

A=?,B=?,C=?

A=0,B=?,C=? A=1,B=?,C=?

A=0,B=0,C=?
A=0,B=1,

C=?

A=1,B=?,

C=0

A=1,B=?,

C=1

000 001 010 011 100 110 101 111

• Can you prove that this never increases the size of the tree?

A generic recursive search algorithm

• Search(assignment, constraints)

• If assignment is complete, return it

• Choose an unassigned variable x

• For every value v in x’s domain, if setting x to v in

assignment does not violate constraints:

– Set x to v in assignment

– result := Search(assignment, constraints)

– If result != failure return result

– Unassign x in assignment

• Return failure

Keeping track of remaining possible values

• For every variable, keep track of which values are still

possible

Q X X X

Q X X X

Q X X X

X

Q X X X

X X

X

Q X X X

Q

Q

Q

Q

Q

Q

Q

Q

Q X X

Q X X

Q X X

X

Q X X

X X Q

X

Q X X

only one possibility

for last column; might

as well fill in

now only one left for

other two columns

done!

(no real branching

needed!)

• General heuristic: branch on variable with fewest values

remaining

Arc consistency
• Take two variables connected by a constraint

• Is it true that for every remaining value d of the first

variable, there exists some value d’ of the other variable so

that the constraint is satisfied?

– If so, we say the arc from the first to the second variable is

consistent

– If not, can remove the value d

• General concept: constraint propagation

Q X X

X

Q X X

X

X Q X

X

Is the arc from the fifth to the eighth column consistent?

What about the arc from the eighth to the fifth?

Maintaining arc consistency
• Maintain a queue Q of all ordered pairs of variables with a constraint

(arcs) that need to be checked

• Take a pair (x, y) from the queue

• For every value v in x’s domain, check if there is some value w in y’s
domain so that x=v, y=w is consistent

– If not, remove v from x’s domain

• If anything was removed from x’s domain, add every arc (z, x) to Q

• Continue until Q is empty

• Runtime?

• n variables, d values per domain

• O(n2) arcs;

• each arc is added to the queue at most d times;

• consistency of an arc can be checked with d2 lookups in the constraint’s
table;

• so O(n2d3) lookups

• Can we do better?

Maintaining arc consistency (2)
• For every arc (x, y), for every value v for x, maintain

the number n((x, y), v) of remaining values for y that
are consistent with x=v

• Every time that some n((x, y), v) = 0,

– remove v from x’s domain;

– for every arc (z, x), for every value w for z, if (x=v, z=w) is
consistent with the constraint, reduce n((z, x), w) by 1

• Runtime:

– for every arc (z, x) (n2 of them), a value is removed from
x’s domain at most d times;

– each time we have to check for at most d of z’s values
whether it is consistent with the removed value for x;

– so O(n2d2) lookups

An example where arc

consistency fails

• A = B, B = C, C ≠ A – obviously inconsistent

– ~ Moebius band

• However, arc consistency cannot eliminate

anything

B

A

C

(A, B) in {(0,0), (1,1)}

(B, C) in {(0,0), (1,1)}

(A, C) in {(0,1), (1,0)}

Tree-structured constraint graphs
• Suppose we only have pairwise constraints and

the graph is a tree (or forest = multiple disjoint trees)

X1

X3 X4X2

X5

• Dynamic program for solving this (linear in #variables):

– Starting from the leaves and going up, for each node x, compute all the

values for x such that the subtree rooted at x can be solved

• Equivalently: apply arc consistency from each parent to its children, starting

from the bottom

– If no domain becomes empty, once we reach the top, easy to fill in solution

Generalizations of the tree-based approach

• What if our constraint graph is “almost” a tree?
X1

X3 X4X2

X5

• A cycle cutset is a set of variables whose removal results

in a tree (or forest)

– E.g. {X1}, {X6}, {X2, X3}, {X2, X4}, {X3, X4}

• Simple algorithm: for every internally consistent assignment

to the cutset, solve the remaining tree as before (runtime?)

• Graphs of bounded treewidth can also be solved in

polynomial time (won’t define these here)

X6

A different approach: optimization

• Let’s say every way of placing 8 queens on a

board, one per column, is feasible

• Now we introduce an objective: minimize the

number of pairs of queens that attack each other

– More generally, minimize the number of violated

constraints

• Pure optimization

Local search: hill climbing
• Start with a complete state

• Move to successor with best (or at least better) objective value

– Successor: move one queen within its column

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

4 attacking pairs 3 attacking pairs 2 attacking pairs

no more

improvements

• Local search can get stuck in a local optimum

local optimum global optimum (also

a local optimum)

Avoiding getting stuck with local search
• Random restarts: if your hill-climbing search fails

(or returns a result that may not be optimal),

restart at a random point in the search space

– Not always easy to generate a random state

– Will eventually succeed (why?)

• Simulated annealing:

– Generate a random successor (possibly worse than

current state)

– Move to that successor with some probability that is

sharply decreasing in the badness of the state

– Also, over time, as the “temperature decreases,”

probability of bad moves goes down

Constraint optimization
• Like a CSP, but with an objective

– E.g., minimize number of violated constraints

– Another example: no two queens can be in the same row

or column (hard constraint), minimize number of pairs of

queens attacking each other diagonally (objective)

• Can use all our techniques from before: heuristics,

A*, IDA*, …

• Also popular: depth-first branch-and-bound

– Like depth-first search, except do not stop when first

feasible solution found; keep track of best solution so far

– Given admissible heuristic, do not need to explore nodes

that are worse than best solution found so far

Minimize #violated diagonal constraints
• Cost of a node: #violated diagonal constraints so far

• No heuristic Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

cost = 0

cost = 0 cost = 1 cost = 0

A* (=uniform cost here), IDA*

(=iterative lengthening here) will

never explore this node

Depth first branch and bound will find a

suboptimal solution here first (no way to tell

at this point this is worse than right node)

Optimal solution is down here

(cost 0)

(matter of definition;

could just as well say

that violated

constraints so far is

the heuristic and

interior nodes have

no cost)

Linear programs: example

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• We make reproductions of
two paintings

• Painting 1 sells for $30, painting 2
sells for $20

• Painting 1 requires 4 units of blue, 1
green, 1 red

• Painting 2 requires 2 blue, 2 green, 1
red

• We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2

0

4

6

8

2 4 6 8

optimal solution:

x=3, y=2

Modified LP

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

Optimal solution: x = 2.5,

y = 2.5

Solution value = 7.5 + 5 =

12.5

Half paintings?

Integer (linear) program

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0, integer

y ≥ 0, integer

2

0

4

6

8

2 4 6 8

optimal LP

solution: x=2.5,

y=2.5

(objective 12.5)

optimal IP

solution: x=2,

y=3

(objective 12)

Mixed integer (linear) program

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0, integer

2

0

4

6

8

2 4 6 8

optimal LP

solution: x=2.5,

y=2.5

(objective 12.5)

optimal IP

solution: x=2,

y=3

(objective 12)

optimal MIP

solution: x=2.75,

y=2

(objective 12.25)

Solving linear/integer programs

• Linear programs can be solved efficiently

– Simplex, ellipsoid, interior point methods…

• (Mixed) integer programs are NP-hard to solve

– Quite easy to model many standard NP-complete

problems as integer programs (try it!)

– Search type algorithms such as branch and bound

• Standard packages for solving these

– GNU Linear Programming Kit, CPLEX, …

• LP relaxation of (M)IP: remove integrality

constraints

– Gives upper bound on MIP (~admissible heuristic)

Satisfiability as an integer program
(x1 OR x2 OR NOT(x4)) AND (NOT(x2) OR NOT(x3)) AND

…

becomes

for all xj, 0 ≤ xj ≤ 1, xj integer (shorthand: xj in {0,1})

x1 + x2 + (1-x4) ≥ 1

(1-x2) + (1-x3) ≥ 1

…

Solving integer programs is at least as hard as satisfiability,

hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!

Solving the integer program with DFS branch and bound

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≤ 2

LP solution: x=2.5,

y=2.5, obj = 12.5

LP solution: x=3,

y=1.5, obj = 12

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

y ≥ 2

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

y ≤ 1

LP solution:

infeasible

LP solution: x=3.25,

y=1, obj = 11.75

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

y ≤ 1

x ≥ 4

LP solution:

infeasible

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

y ≤ 1

x ≤ 3

LP solution: x=3,

y=1, obj = 11

LP solution: x=2,

y=3, obj = 12

trick: for integer x and

k, either x ≤ k

or x ≥ k+1

if LP solution is integral, we are done

Again with a more fortunate choice

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 3

maximize 3x + 2y

subject to

4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≤ 2

LP solution: x=2.5,

y=2.5, obj = 12.5

LP solution: x=3,

y=1.5, obj = 12

LP solution: x=2,

y=3, obj = 12

done!

