CPS 570: Artificial Intelligence

More search: When the path to the solution doesn't matter

Instructor: Vincent Conitzer

Search where the path doesn't matter

- So far, looked at problems where the path was the solution
 - Traveling on a graph
 - Eights puzzle
- However, in many problems, we just want to find a goal state
 - Doesn't matter how we get there

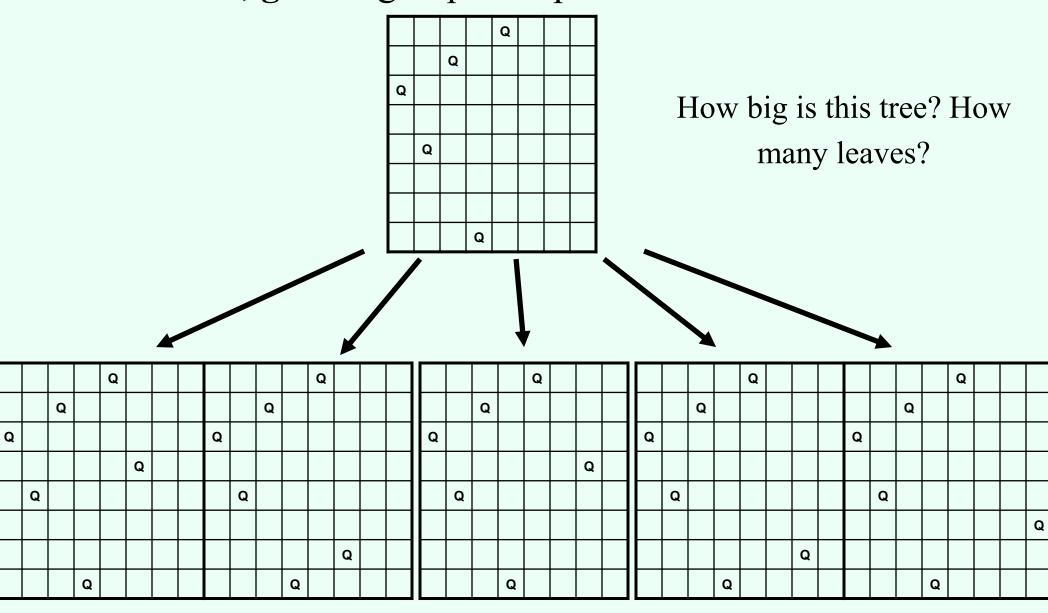
Queens puzzle

 Place eight queens on a chessboard so that no two attack each other

				Q			
		Q					
Q							
						Q	
	Q						
							Q
					Q		
			Q				

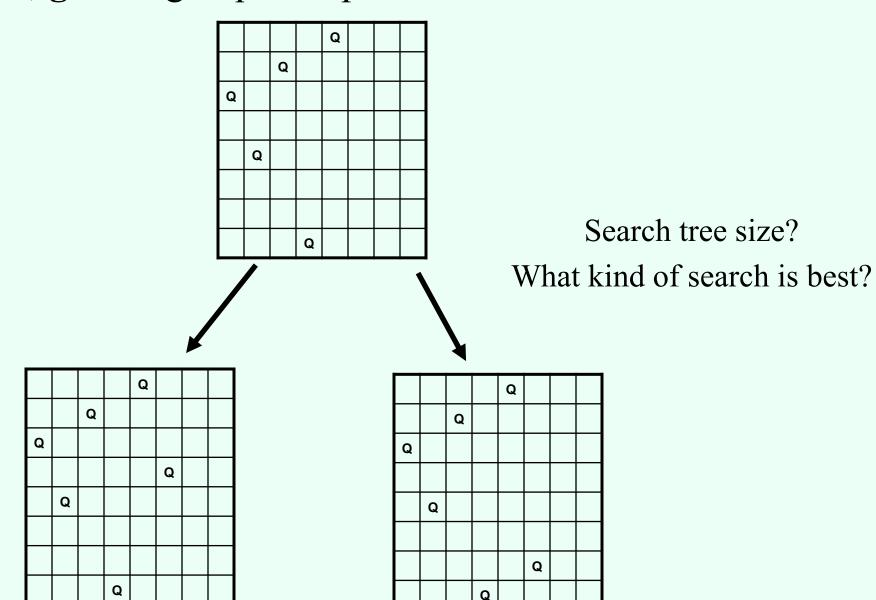
Search formulation of the queens puzzle

• Successors: all valid ways of placing additional queen on the board; goal: eight queens placed



Search formulation of the queens puzzle

• Successors: all valid ways of placing a queen in the next column; goal: eight queens placed

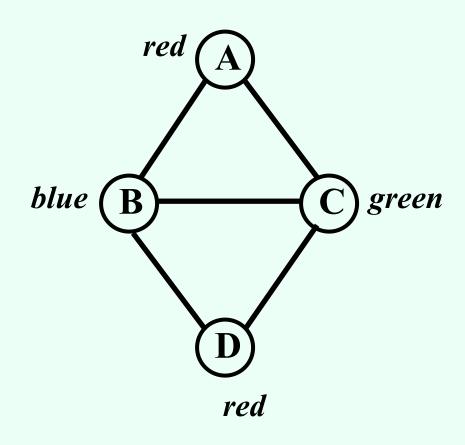


Constraint satisfaction problems (CSPs)

- Defined by:
 - A set of variables x₁, x₂, ..., x_n
 - A domain D_i for each variable x_i
 - Constraints c₁, c₂, ..., c_m
- A constraint is specified by
 - A subset (often, two) of the variables
 - All the allowable joint assignments to those variables
- Goal: find a complete, consistent assignment
- Queens problem: (other examples in next slides)
 - x_i in {1, ..., 8} indicates in which row in the ith column to place a queen
 - For example, constraint on x_1 and x_2 : {(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), ..., (3,1), (3,5),}

Graph coloring

 Fixed number of colors; no two adjacent nodes can share a color



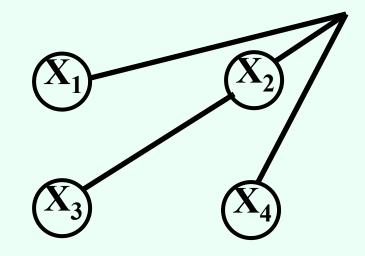
Satisfiability

Formula in conjunctive normal form:

$$(x_1 OR x_2 OR NOT(x_4))$$
 AND $(NOT(x_2) OR NOT(x_3))$ AND ...

 Label each variable x_j as true or false so that the formula becomes true

Constraint hypergraph:
each hyperedge
represents a constraint



Cryptarithmetic puzzles

TWO

T W O +

FOUR

E.g., setting F = 1, O = 4, R = 8, T = 7, W = 3,

U = 6 gives 734 + 734 = 1468

Cryptarithmetic puzzles...

TWO

T W O +

FOUR

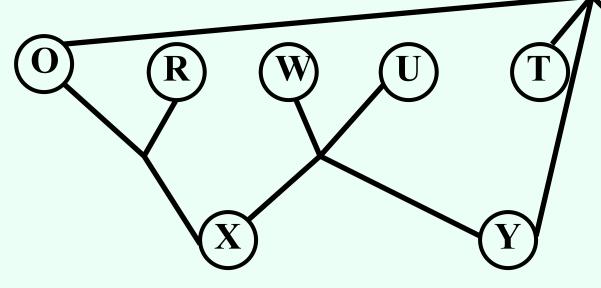
Trick: introduce auxiliary

variables X, Y

$$O + O = 10X + R$$

$$W + W + X = 10Y + U$$

$$T + T + Y = 10F + O$$



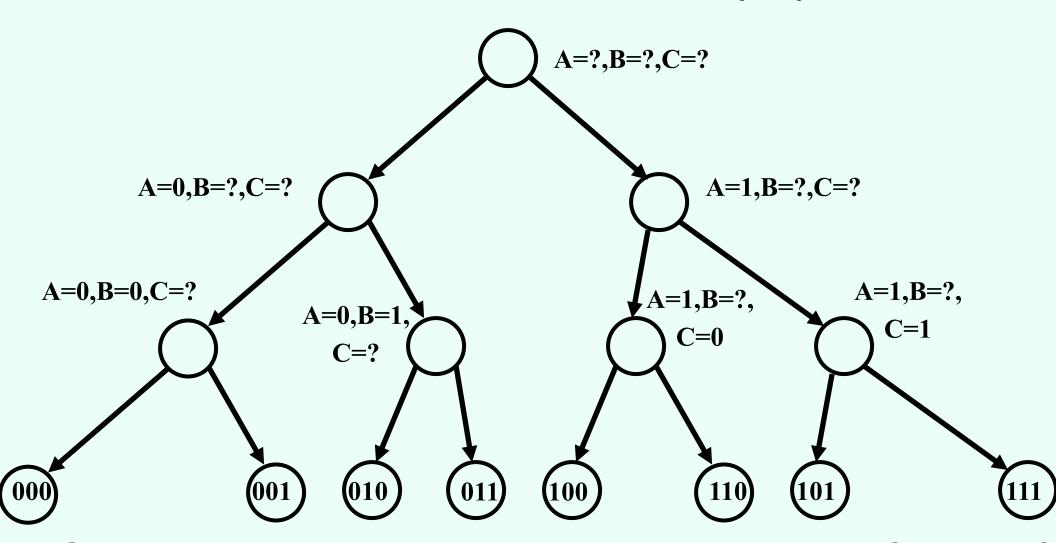
also need pairwise constraints between original variables if they are supposed to be different

Generic approaches to solving CSPs

- State: some variables assigned, others not assigned
- Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
 - Can check for consistency when expanding
 - How many leaves do we get in the worst case?
- CSPs satisfy commutativity: order in which actions applied does not matter
- Better idea: only consider assignments for a single variable at a time
 - How many leaves?

Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in {0,1}



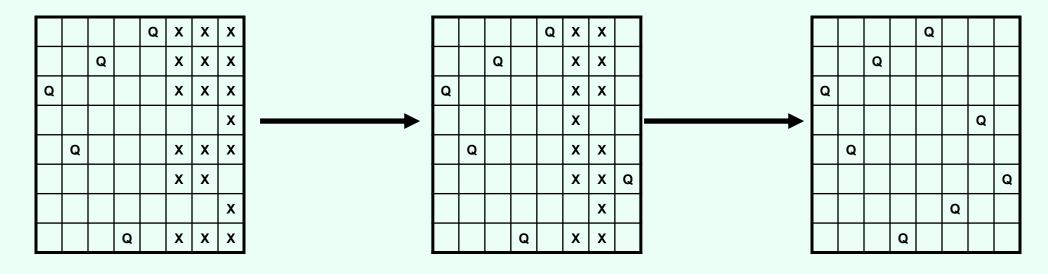
Can you prove that this never increases the size of the tree?

A generic recursive search algorithm

- Search(assignment, constraints)
- If assignment is complete, return it
- Choose an unassigned variable x
- For every value v in x's domain, if setting x to v in assignment does not violate constraints:
 - Set x to v in assignment
 - result := Search(assignment, constraints)
 - If result != failure return result
 - Unassign x in assignment
- Return failure

Keeping track of remaining possible values

• For every variable, keep track of which values are still possible



only one possibility for last column; might as well fill in now only one left for other two columns

done!
(no real branching needed!)

 General heuristic: branch on variable with fewest values remaining

Arc consistency

- Take two variables connected by a constraint
- Is it true that for **every** remaining value *d* of the first variable, there exists **some** value *d'* of the other variable so that the constraint is satisfied?
 - If so, we say the arc from the first to the second variable is consistent
 - If not, can remove the value d
- General concept: constraint propagation

			<u> </u>				
Q				Х			Х
				Х			
		Q		Х			х
				Х			
				Х	Q		х
				Х			

Is the arc from the fifth to the eighth column consistent?

What about the arc from the eighth to the fifth?

Maintaining arc consistency

- Maintain a queue Q of all ordered pairs of variables with a constraint (arcs) that need to be checked
- Take a pair (x, y) from the queue
- For every value v in x's domain, check if there is some value w in y's domain so that x=v, y=w is consistent
 - If not, remove v from x's domain
- If anything was removed from x's domain, add every arc (z, x) to Q
- Continue until Q is empty
- Runtime?
- *n* variables, *d* values per domain
- $O(n^2)$ arcs;
- each arc is added to the queue at most d times;
- consistency of an arc can be checked with d^2 lookups in the constraint's table;
- so $O(n^2d^3)$ lookups
- Can we do better?

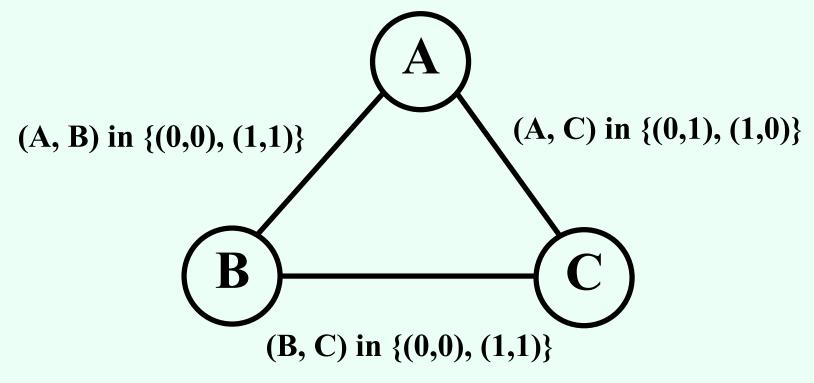
Maintaining arc consistency (2)

- For every arc (x, y), for every value v for x, maintain the number n((x, y), v) of remaining values for y that are consistent with x=v
- Every time that some n((x, y), v) = 0,
 - remove v from x's domain;
 - for every arc (z, x), for every value w for z, if (x=v, z=w) is consistent with the constraint, reduce n((z, x), w) by 1

• Runtime:

- for every arc (z, x) $(n^2$ of them), a value is removed from x's domain at most d times;
- each time we have to check for at most d of z's values
 whether it is consistent with the removed value for x;
- so $O(n^2d^2)$ lookups

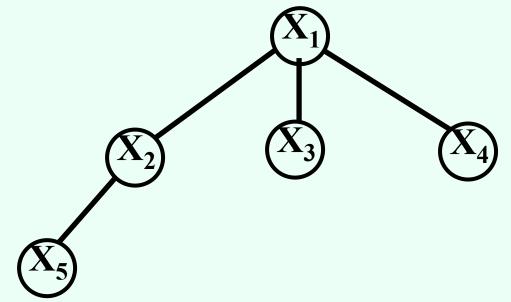
An example where arc consistency fails



- A = B, B = C, C ≠ A obviously inconsistent
 ~ Moebius band
- However, arc consistency cannot eliminate anything

Tree-structured constraint graphs

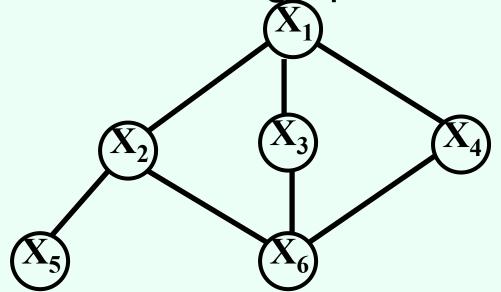
 Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)



- Dynamic program for solving this (linear in #variables):
 - Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
 - Equivalently: apply arc consistency from each parent to its children, starting from the bottom
 - If no domain becomes empty, once we reach the top, easy to fill in solution

Generalizations of the tree-based approach

What if our constraint graph is "almost" a tree?



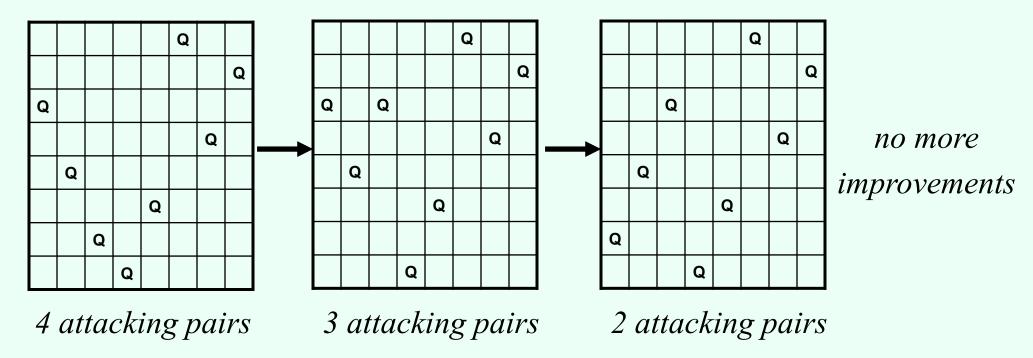
- A cycle cutset is a set of variables whose removal results in a tree (or forest)
 - E.g. $\{X_1\}$, $\{X_6\}$, $\{X_2, X_3\}$, $\{X_2, X_4\}$, $\{X_3, X_4\}$
- Simple algorithm: for every internally consistent assignment to the cutset, solve the remaining tree as before (runtime?)
- Graphs of bounded treewidth can also be solved in polynomial time (won't define these here)

A different approach: optimization

- Let's say every way of placing 8 queens on a board, one per column, is feasible
- Now we introduce an objective: minimize the number of pairs of queens that attack each other
 - More generally, minimize the number of violated constraints
- Pure optimization

Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
 - Successor: move one queen within its column



Local search can get stuck in a local optimum



Avoiding getting stuck with local search

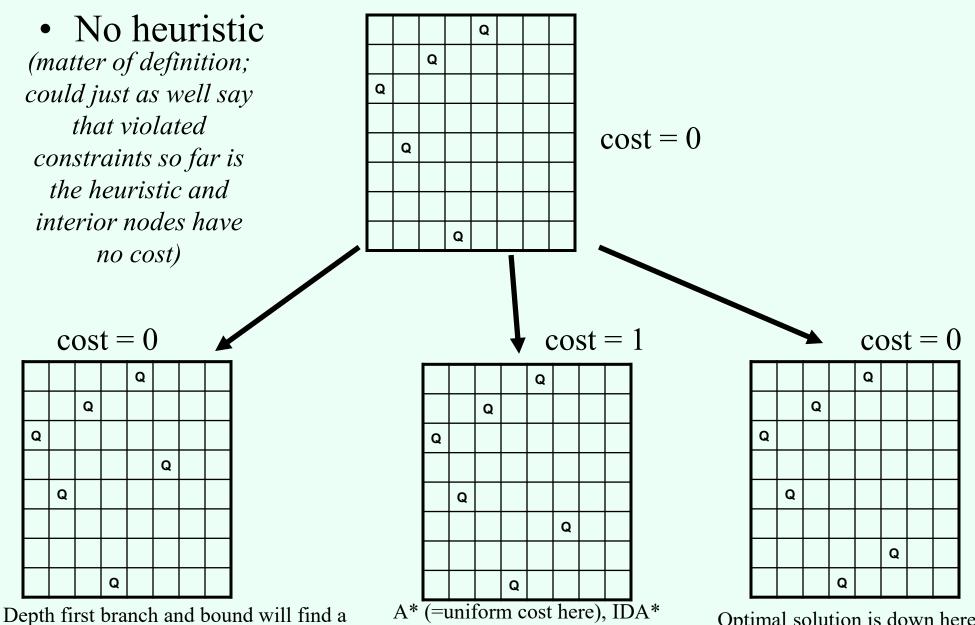
- Random restarts: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
 - Not always easy to generate a random state
 - Will eventually succeed (why?)
- Simulated annealing:
 - Generate a random successor (possibly worse than current state)
 - Move to that successor with some probability that is sharply decreasing in the badness of the state
 - Also, over time, as the "temperature decreases,"
 probability of bad moves goes down

Constraint optimization

- Like a CSP, but with an objective
 - E.g., minimize number of violated constraints
 - Another example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)
- Can use all our techniques from before: heuristics,
 A*, IDA*, ...
- Also popular: depth-first branch-and-bound
 - Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
 - Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far

Minimize #violated diagonal constraints

• Cost of a node: #violated diagonal constraints so far



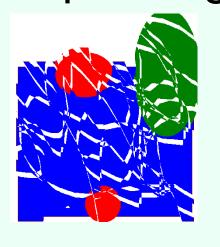
suboptimal solution here first (no way to tell at this point this is worse than right node)

(=iterative lengthening here) will **never** explore this node

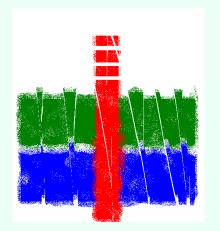
Optimal solution is down here (cost 0)

Linear programs: example

 We make reproductions of two paintings



sells for \$20



maximize 3x + 2y

subject to

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

Painting 1 requires 4 units of blue, 1 green, 1 red

Painting 1 sells for \$30, painting 2

Painting 2 requires 2 blue, 2 green, 1 y ≥ 0

We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y
subject to

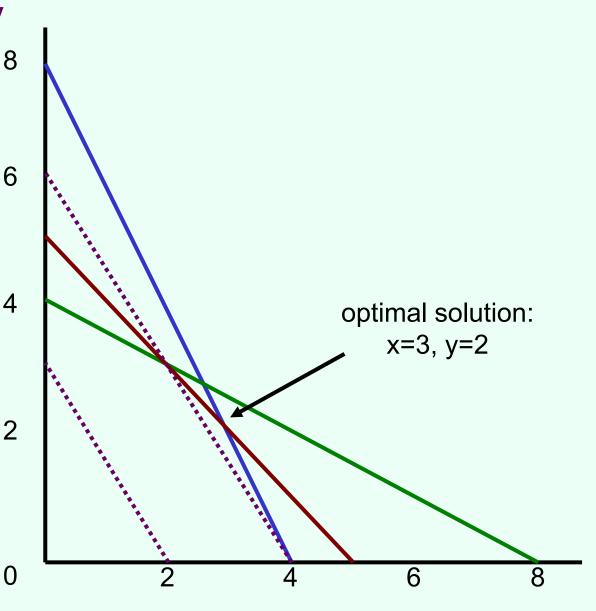
$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

$$y \ge 0$$



Modified LP

$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

$$y \ge 0$$

Optimal solution: x = 2.5, y = 2.5

Half paintings?

Integer (linear) program

maximize 3x + 2y
8
subject to

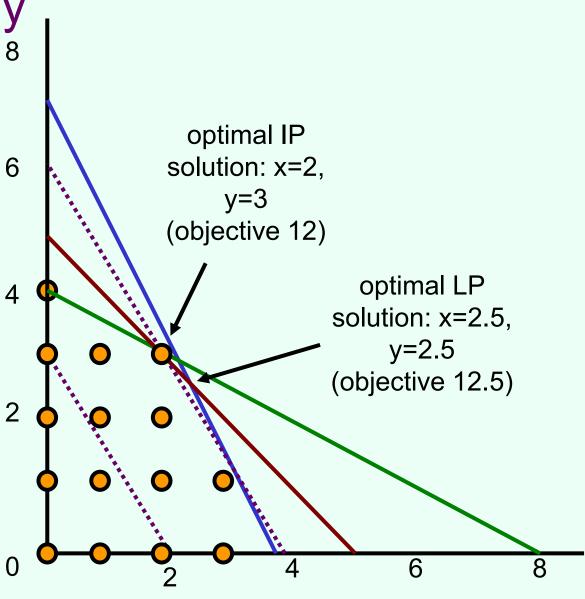
$$4x + 2y \le 15^{-6}$$

$$x + 2y \le 8$$

$$x + y \le 5$$

 $x \ge 0$, integer

y ≥ 0, integer



Mixed integer (linear) program

maximize 3x + 2y
subject to

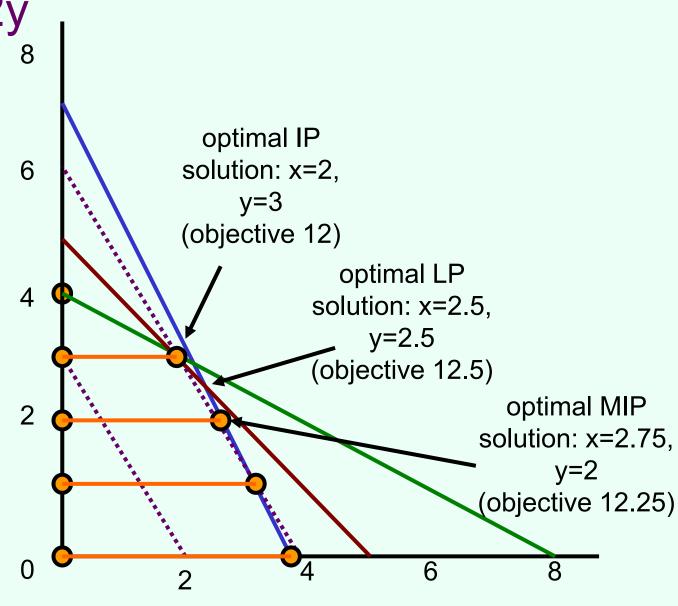
$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

 $y \ge 0$, integer



Solving linear/integer programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
 - Quite easy to model many standard NP-complete problems as integer programs (try it!)
 - Search type algorithms such as branch and bound
- Standard packages for solving these
 - GNU Linear Programming Kit, CPLEX, ...
- LP relaxation of (M)IP: remove integrality constraints
 - Gives upper bound on MIP (~admissible heuristic)

Satisfiability as an integer program

 $(x_1 OR x_2 OR NOT(x_4)) AND (NOT(x_2) OR NOT(x_3)) AND ...$

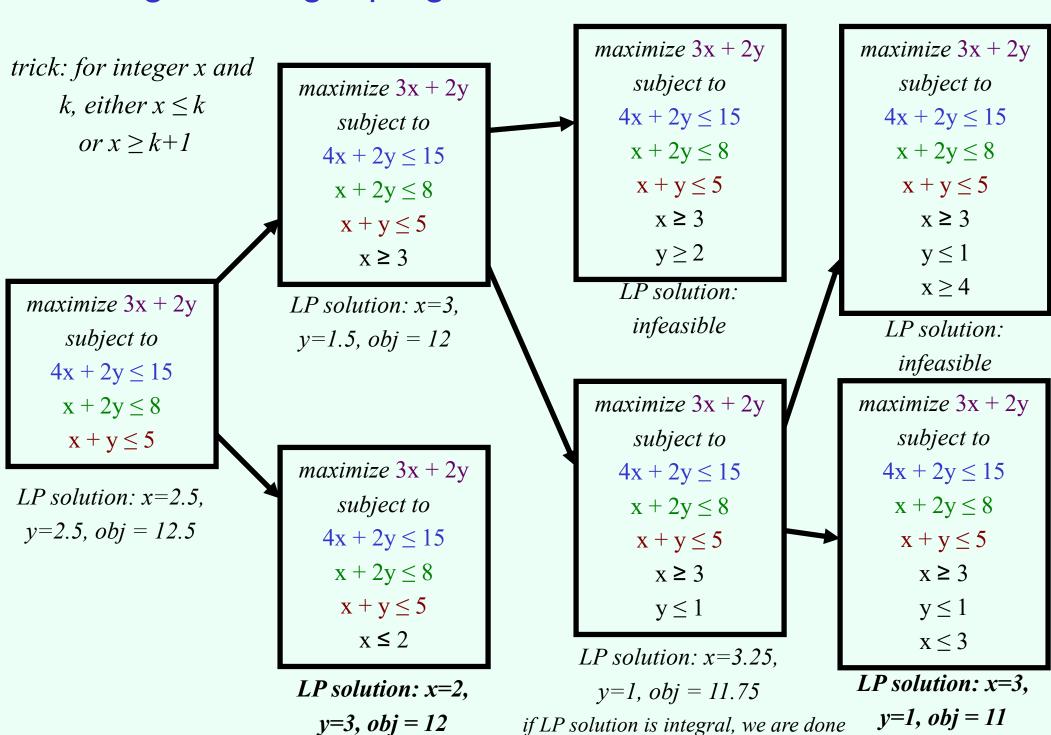
becomes

for all x_j , $0 \le x_j \le 1$, x_j integer (shorthand: x_j in $\{0,1\}$) $x_1 + x_2 + (1-x_4) \ge 1$ $(1-x_2) + (1-x_3) \ge 1$

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!

Solving the integer program with DFS branch and bound



Again with a more fortunate choice

```
maximize 3x + 2y

subject to

4x + 2y \le 15

x + 2y \le 8

x + y \le 5

x \ge 3
```

LP solution:
$$x=3$$
, $y=1.5$, $obj = 12$

done!

maximize
$$3x + 2y$$

subject to
 $4x + 2y \le 15$
 $x + 2y \le 8$
 $x + y \le 5$

LP solution: x=2.5, y=2.5, obj = 12.5

maximize
$$3x + 2y$$

subject to
 $4x + 2y \le 15$
 $x + 2y \le 8$
 $x + y \le 5$
 $x \le 2$

LP solution:
$$x=2$$
, $y=3$, $obj = 12$