
CPS 570: Artificial Intelligence

Planning

Instructor: Vincent Conitzer

Planning
• We studied how to take actions in the world

(search)

• We studied how to represent objects, relations,

etc. (logic)

• Now we will combine the two!

State of the world (STRIPS language)
• State of the world = conjunction of positive,

ground, function-free literals

• At(Home) AND IsAt(Umbrella, Home) AND

CanBeCarried(Umbrella) AND

IsUmbrella(Umbrella) AND HandEmpty AND Dry

• Not OK as part of the state:

– NOT(At(Home)) (negative)

– At(x) (not ground)

– At(Bedroom(Home)) (uses the function Bedroom)

• Any literal not mentioned is assumed false

– Other languages make different assumptions, e.g.,

negative literals part of state, unmentioned literals

unknown

An action: TakeObject

• TakeObject(location, x)

• Preconditions:

– HandEmpty

– CanBeCarried(x)

– At(location)

– IsAt(x, location)

• Effects (“NOT something” means that that

something should be removed from state):

– Holding(x)

– NOT(HandEmpty)

– NOT(IsAt(x, location))

Another action

• WalkWithUmbrella(location1, location2,

umbr)

• Preconditions:

–At(location1)

–Holding(umbr)

– IsUmbrella(umbr)

• Effects:

– At(location2)

– NOT(At(location1))

Yet another action

• WalkWithoutUmbrella(location1,

location2)

• Preconditions:

–At(location1)

• Effects:

– At(location2)

– NOT(At(location1))

– NOT(Dry)

A goal and a plan
• Goal: At(Work) AND Dry

• Recall initial state:

– At(Home) AND IsAt(Umbrella, Home) AND

CanBeCarried(Umbrella) AND IsUmbrella(Umbrella)

AND HandEmpty AND Dry

• TakeObject(Home, Umbrella)

– At(Home) AND CanBeCarried(Umbrella) AND

IsUmbrella(Umbrella) AND Dry AND Holding(Umbrella)

• WalkWithUmbrella(Home, Work, Umbrella)

– At(Work) AND CanBeCarried(Umbrella) AND

IsUmbrella(Umbrella) AND Dry AND Holding(Umbrella)

Planning to write a paper
• Suppose your goal is to be a co-author on an AI paper

with both theorems and experiments, within a year

LearnAbout(x,y)

Preconditions: HasTimeForStudy(x)

Effects: Knows(x,y),

NOT(HasTimeForStudy(x))

HaveNewIdea(x)

Preconditions: Knows(x,AI),

Creative(x)

Effects: Idea, Contributed(x)

ProveTheorems(x)

Preconditions: Knows(x,AI),

Knows(x,Math), Idea

Effect: Theorems, Contributed(x)

PerformExperiments(x)

Preconditions: Knows(x,AI),

Knows(x,Coding), Idea

Effect: Experiments, Contributed(x)

WritePaper(x)

Preconditions: Knows(x,AI),

Knows(x,Writing), Idea,

Theorems, Experiments

Effect: Paper, Contributed(x)

Goal: Paper AND Contributed(You)

FindExistingOpenProblem(x)

Preconditions: Knows(x,AI)

Effects: Idea

Name a few things that are

missing/unrealistic…

Some start states

Start1: HasTimeForStudy(You) AND Knows(You,Math) AND Knows(You,Coding) AND

Knows(You,Writing)

Start2: HasTimeForStudy(You) AND Creative(You) AND Knows(Advisor,AI) AND

Knows(Advisor,Math) AND Knows(Advisor,Coding) AND Knows(Advisor,Writing)

(Good luck with that plan…)

Start3: Knows(You,AI) AND Knows(You,Coding) AND Knows(OfficeMate,Math) AND

HasTimeForStudy(OfficeMate) AND Knows(Advisor,AI) AND Knows(Advisor,Writing)

Start4: HasTimeForStudy(You) AND Knows(Advisor,AI) AND Knows(Advisor,Math) AND

Knows(Advisor,Coding) AND Knows(Advisor,Writing)

Forward state-space search

(progression planning)
• Successors: all states that can be reached with an

action whose preconditions are satisfied in current state

At(Home)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

Dry

At(Home)

Holding(Umbrella)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

Dry

TakeObject(Home, Umbrella)

At(Work)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

WalkWithoutUm

brella(Home,

Work)

WalkWithUmbrella(

Home, Work,

Umbrella)

At(Work)

Holding(Umbrella)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

Dry

WalkWithout

Umbrella(Wor

k, Home)

At(Home)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

GOAL!

WalkWithoutUmbrella(

Home, Umbrella) (!)

WalkWithoutUm

brella(Home,

Work)

Backward state-space search

(regression planning)

• Predecessors: for every action that accomplishes one of

the literals (and does not undo another literal), remove

that literal and add all the preconditions

At(location1)

At(location2)

IsAt(umbr, location2)

CanBeCarried(umbr)

IsUmbrella(umbr)

HandEmpty

Dry

At(location1)

Holding(umbr)

IsUmbrella(umbr)

Dry

TakeObject(location2, umbr)

This is accomplished in the

start state, by substituting

location1=location2=Home,

umbr=Umbrella

WalkWithUmbrella(

location1, Work,

umbr)

At(Work)

Dry

GOAL

WalkWithUmbrella(location2, location1)

WalkWithoutUmbrella can never be used, because it undoes Dry

(this is good)

Heuristics for state-space search

• Cost of a plan: (usually) number of actions

• Heuristic 1: plan for each subgoal (literal)

separately, sum costs of plans

– Does this ever underestimate? Overestimate?

• Heuristic 2: solve a relaxed planning problem in

which actions never delete literals (empty-delete-

list heuristic)

– Does this ever underestimate? Overestimate?

– Very effective, even though requires solution to (easy)

planning problem

• Progression planners with empty-delete-list

heuristic perform well

Blocks world

• On(B, A), On(A, Table), On(D, C), On(C,

Table), Clear(B), Clear(D)

A

B

C

D

Blocks world: Move action

• Move(x,y,z)

• Preconditions:

– On(x,y), Clear(x), Clear(z)

• Effects:

– On(x,z), Clear(y), NOT(On(x,y)), NOT(Clear(z))

A

B

C

D

Blocks world: MoveToTable action

• MoveToTable(x,y)

• Preconditions:

– On(x,y), Clear(x)

• Effects:

– On(x,Table), Clear(y), NOT(On(x,y))

A

B

C

D

Blocks world example

• Goal: On(A,B) AND Clear(A) AND On(C,D)

AND Clear(C)

• A plan: MoveToTable(B, A), MoveToTable(D,

C), Move(C, Table, D), Move(A, Table, B)

• Really two separate problem instances

A

B

C

D

A partial-order plan

Goal: On(A,B) AND

Clear(A) AND

On(C,D) AND

Clear(C)

A

B

C

D
Start

MoveToTable(

B,A)

MoveToTable(

D,C)

Move(A,

Table, B)

Move(C,

Table, D)

Finish
Any total order on the actions consistent with

this partial order will work

A partial-order plan (with more detail)
Start

MoveToTable(B,

A)

MoveToTable(D,

C)

Move(A,T

able, B)

Move(C,

Table, D)

Finish

On(B,A) Clear(B) On(D,C)Clear(D)

Clear(A)Clear(B) On(A, Table) Clear(D) Clear(C)On(C, Table)

On(A, B) On(C, D)Clear(A) Clear(C)

On(B,A) Clear(B) On(D,C)Clear(D)On(A, Table) On(C, Table)

Not everything decomposes into

multiple problems: Sussman Anomaly

• Goal: On(A,B) AND On(B,C)

• Focusing on one of these two individually first

does not work

• Optimal plan: MoveToTable(C,A),

Move(B,Table,C), Move(A,Table,B)

A B

C

An incorrect partial order plan for

the Sussman Anomaly

Start

Finish

On(A, B)

On(A, Table)

MoveToTable(C,

A) Move(B,

Table,C)

Move(A,

Table,B)

On(B, C)

On(B, Table) Clear(B)On(C, A)Clear(C)

On(C, A)Clear(C)

Clear(A) On(A, Table) Clear(B)

Clear(B)Clear(C) On(B, Table)

Move(B,Table,C) must be

after MoveToTable(C,A),

otherwise it will ruin

Clear(C)

Move(A,Table,B) must be

after Move(B,Table,C),

otherwise it will ruin

Clear(B)

Corrected partial order plan for the

Sussman Anomaly

Start

Finish

On(A, B)

On(A, Table)

MoveToTable(C,

A) Move(B,

Table, C)

Move(A,

Table, B)

On(B, C)

On(B, Table) Clear(B)On(C, A)Clear(C)

On(C, A)Clear(C)

Clear(A) On(A, Table) Clear(B)

Clear(B)Clear(C) On(B, Table)

No more flexibility in the

order due to protection of

causal links

Searching for a partial-order plan
Start

WalkWithoutUmbrella(H

ome, Work)

Finish

At(Work) Dry

At(Home) IsAt(Umbrella,Home) CanBeCarried(Umbrella) IsUmbrella(Umbrella) HandEmpty Dry

no way to resolve conflict!

WalkWithUmbrella(Home,

Work, Umbrella)At(Home)

At(Home)Holding(Umbrella) IsUmbrella(Umbrella)

TakeObject(Home,

Umbrella)

HandEmptyCanBeCarried(Umbrella)At(Home) IsAt(Umbrella,Home)

Searching for partial-order plans
• Somewhat similar to constraint satisfaction

• Search state = partially completed partial order plan

– Not to be confused with states of the world

– Contains actions, ordering constraints on actions, causal links, some open

preconditions

• Search works as follows:

– Choose one open precondition p,

– Consider all actions that achieve p (including ones already in the plan),

– For each such action, consider each way of resolving conflicts using ordering

constraints

• Why do we need to consider only one open precondition (instead of

all)? Is this true for backward state-space search?

• Tricky to resolve conflicts if we leave variables unbound

– E.g., if we use WalkWithUmbrella(location1, Work, umbr) without specifying

what location1 or umbr is

Planning graphs

• Each level has literals

that “could be true” at

that level

• Mutex (mutual

exclusion) relations

indicate incompatible

actions/literals

On(C, A)

On(A, Table)

Clear(C)

MoveToTable(C,A)

Move(C,A,B)

On(B, Table)

Clear(B)

Move(B,Table,C)

On(C, A)

On(A, Table)

Clear(C)

On(B, Table)

Clear(B)

On(C, Table)

On(C, B)

On(B, C)

Clear(A) … continued on board

Reasons for mutex relations…

• … between actions:

– Inconsistent effects: one action negates effect of

the other

– Interference: one action negates precondition of

the other

– Competing needs: the actions have preconditions

that are mutex

• … between literals:

– Inconsistent support: any pair of actions that can

achieve these literals is mutex

A problematic case for

planning graphs

• FeedWith(x, y)

–Preconditions: Edible(y)

–Effects: NOT(Edible(y)), Fed(x)

• Start: Edible(Bread1), Edible(Bread2)

• Goal: Fed(Person1), Fed(Person2),

Fed(Person3)

Planning graph for feeding

• Any two of these could

simultaneously be true at

time 1, so no mutex

relations

• Really need 3-way mutex

relations, but experimentally

this is computationally not

worthwhile

Edible(Bread1)
FeedWith(Person1,

Bread1)

Edible(Bread2)

FeedWith(Person2,

Bread1)

FeedWith(Person3,

Bread1)

FeedWith(Person1,

Bread2)

FeedWith(Person2,

Bread2)

FeedWith(Person3,

Bread2)

Edible(Bread1)

Edible(Bread2)

Fed(Person1)

Fed(Person2)

Fed(Person3)

Uses of planning graphs

• If the goal literals do not all appear at a level (or

have mutex relations) then we know we need

another level

– Converse does not hold

• Useful heuristic: first time that all goal literals

appear at a level, with no mutex relations

• Graphplan algorithm: once all goal literals appear,

try to extract solution from graph

– Can use CSP techniques by labeling each action as “in

the plan” or “out of the plan”

– In case of failure, generate another level

Example

• Fast-Forward planner…

– https://fai.cs.uni-saarland.de/hoffmann/ff.html

• … with towers of Hanoi example…

– http://www.tempastic.org/vhpop/

• … in course directory:

• ./ff -o hanoi-domain.pddl -f hanoi-3.pddl

• Btw., why is towers of Hanoi solvable with any

number of disks?

https://fai.cs.uni-saarland.de/hoffmann/ff.html
http://www.tempastic.org/vhpop/

