CPS 570: Artificial Intelligence

Introduction to probability

Instructor: Vincent Conitzer

Uncertainty

- So far in course, everything deterministic
- If I walk with my umbrella, I will not get wet
- But: there is some chance my umbrella will break!
- Intelligent systems must take possibility of failure into account...
- May want to have backup umbrella in city that is often windy and rainy
- ... but should not be excessively conservative
- Two umbrellas not worthwhile for city that is usually not windy
- Need quantitative notion of uncertainty

Probability

- Example: roll two dice
- Random variables:
- $\mathrm{X}=$ value of die 1
$-Y=$ value of die 2
Outcome is represented by an ordered pair of values (x, y)
- E.g., $(6,1): X=6, Y=1$
- Atomic event or sample point tells us the complete state of the world, i.e., values of all random variables
- Exactly one atomic event will happen; each atomic event has $\mathrm{a} \geq 0$ probability; sum to 1
- E.g., $\mathrm{P}(\mathrm{X}=1$ and $\mathrm{Y}=6)=1 / 36$

6		36	1/36	1/36	1/36	1/36
5			$\times 36$	1/36	1/36	1/36
4	1/36	1/5	/36	+36	1/36	1/36
3	1/36	1/36		1/36		1/36
2	1/36	1/36	1/36			
1	1/36	1/36	1/36	1/36		,

- An event is a proposition about the state (=subset of states)
$-\mathrm{X}+\mathrm{Y}=7$
- Probability of event = sum of probabilities of atomic events where event is true

Cards and combinatorics

- Draw a hand of 5 cards from a standard deck with $4 * 13=$ 52 cards (4 suits, 13 ranks each)
- Each of the (52 choose 5) hands has same probability 1/(52 choose 5)
- Probability of event = number of hands in that event / (52 choose 5)
- What is the probability that...
- no two cards have the same rank?
- you have a flush (all cards the same suit?)
- you have a straight (5 cards in order of rank, e.g., 8, 9, 10, J, Q)?
- you have a straight flush?
- you have a full house (three cards have the same rank and the two other cards have the same rank)?

Facts about probabilities of events

- If events A and B are disjoint, then
$-P(A$ or $B)=P(A)+P(B)$
- More generally:
$-P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- If events A_{1}, \ldots, A_{n} are disjoint and exhaustive (one of them must happen) then $\mathrm{P}\left(\mathrm{A}_{1}\right)+\ldots+$ $P\left(A_{n}\right)=1$
- Special case: for any random variable, $\sum_{x} P(X=x)=$ 1
- Marginalization: $P(X=x)=\sum_{y} P(X=x$ and $Y=y)$

Conditional probability

- We might know something about the world - e.g., " $X+Y=6$ or $X+Y=7$ " - given this (and only this), what is the probability of $Y=5$?
- Part of the sample space is eliminated; probabilities are renormalized to sum to 1

1/36	1/36	1/36	1/36	1/36	1/36
1/36	1/36	1/36	1/36	1/36	1/36
1/36	1/36	1/36	1/36	1/36	1/36
1/36	1/36	1/36	1/36	1/36	1/36
1/36	1/36	1/36	1/36	1/36	1/36
1/36	1/36	1/36	1/36	1/36	1/36
1	2	3	4	5	6

Y						
6	1/11	0	0	0	0	0
5	1/11	1/11	0	0	0	0
4	0	1/11	1/11	0	0	0
3	0	0	1/11	1/11	0	0
2	0	0	0	1/11	1/11	0
1	0	0	0	0	1/11	1/11
	1	2	3	4	5	

- $P(Y=5 \mid(X+Y=6)$ or $(X+Y=7))=2 / 11$

Facts about conditional probability

- $P(A \mid B)=P(A$ and $B) / P(B)$

- $P(A \mid B) P(B)=P(A$ and $B)=P(B \mid A) P(A)$
- $P(A \mid B)=P(B \mid A) P(A) / P(B)$
- Bayes' rule

Conditional probability and cards

- Given that your first two cards are Queens, what is the probability that you will get at least three Queens?
- Given that you have at least two Queens (not necessarily the first two), what is the probability that you have at least three Queens?
- Given that you have at least two Queens, what is the probability that you have three Kings?

How can we scale this?

- In principle, we now have a complete approach for reasoning under uncertainty:
- Specify probability for every atomic event,
- Can compute probabilities of events simply by summing probabilities of atomic events,
- Conditional probabilities are specified in terms of probabilities of events: $P(A \mid B)=P(A$ and $B) /$ P(B)
- If we have n variables that can each take k values, how many atomic events are there?

Independence

- Some variables have nothing to do with each other
- Dice: if $X=6$, it tells us nothing about Y
- $P(Y=y \mid X=x)=P(Y=y)$
- So: $P(X=x$ and $Y=y)=P(Y=y \mid X=x) P(X=x)=$ $P(Y=y) P(X=x)$
- Usually just write $P(X, Y)=P(X) P(Y)$
- Only need to specify $6+6=12$ values instead of $6 * 6=36$ values
- Independence among 3 variables: $P(X, Y, Z)=P(X) P(Y) P(Z)$, etc.
- Are the events "you get a flush" and "you get a straight" independent?

An example without cards or dice

	Rain in Beaufort	Sun in Beaufort
Rain in Durham	.2	.1
Sun in		
Durham	.2	.5

- What is the probability of
(disclaimer: no idea if these
numbers are
realistic)
- Rain in Beaufort? Rain in Durham?
- Rain in Beaufort, given rain in Durham?
- Rain in Durham, given rain in Beaufort?
- Rain in Beaufort and rain in Durham are correlated

A possibly rigged casino

- With probability $1 / 2$, the casino is rigged and has dice that come up 6 only $1 / 12$ of the time, and $13 / 12$ of the time

Y	$Z=0$ (fair casino)						Y	$Z=1$ (rigged casino)					
6	1/72	1/72	1/72	1/72	1/72	1/72	6	1/96	1/144	1/144	1/144	1/144	1/288
5	1/72	1/72	1/72	1/72	1/72	1/72	5	1/48	1/72	1/72	1/72	1/72	1/14
4	1/72	1/72	1/72	1/72	1/72	1/72	4	1/48	1/72	1/72	1/72	1/72	1/14
3	1/72	1/72	1/72	1/72	1/72	1/72	3	1/48	1/72	1/72	1/72	1/72	14
2	1/72	1/72	1/72	1/72	1/72	1/72	2	1/48	1/72	1/72	1/72	1/72	1/14
1	1/72	1/72	1/72	1/72	1/72	1/72		1/32	1/48	1/48	1/48	1/48	1/96
	W		$1=$	$\stackrel{4}{)} ?$	5	6		1	2	3	4	5	X

- What is $P(Y=6 \mid X=1)$?
- Are they independent?

Conditional independence

Intuition:

- the only reason that X tells us something about Y,
- is that X tells us something about Z,
- and Z tells us something about Y
- If we already know Z, then X tells us nothing about Y
$P(Y \mid Z, X)=P(Y \mid Z)$ or
$P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$
- "X and Y are conditionally independent given Z "

Medical diagnosis

- X: does patient have flu?
- Y: does patient have headache?
- Z : does patient have fever?
- $P(Y, Z \mid X)=P(Y \mid X) P(Z \mid X)$
- $P(X=1)=.2$
(disclaimer: no idea if these
numbers are
realistic)
- $P(Z=1 \mid X=1)=.4, P(Z=1 \mid X=0)=.1$
- What is $P(X=1 \mid Y=1, Z=0)$?

Conditioning can also

- X : is it raining?
$-P(X=1)=.3$
- Y : are the sprinklers on?
- $\mathrm{P}(\mathrm{Y}=1)$) . 4
- X and Y are independent
- Z : is the grass wet?
$-P(Z=1 \mid X=0, Y=0)=.1$
$-P(Z=1 \mid X=0, Y=1)=.8$
$-P(Z=1 \mid X=1, Y=0)=.7$
$-P(Z=1 \mid X=1, Y=1)=.9$

e

Sprinklers No sprinklers	.012	.056
	.054	.378

Sprinklers	Raining	Not raining
	108	. 224
No sprinklers	. 126	. 042

- Conditional on $\mathrm{Z}=1, \mathrm{X}$ and Y are not independent
- If you know $Z=1$, rain seems likely; then if you also find out $Y=1$, this "explains away" the wetness and rain seems less likely

Context-specific independence

- Recall $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$ really means: for all x, y, z,
- $P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)$
- But it may not be true for all z
- P(Wet, RainingInLondon | CurrentLocation=New York) = P(Wet | CurrentLocation=New York)P(RainingInLondon | CurrentLocation=New York)
- But not
- P(Wet, RainingInLondon | CurrentLocation=London) = P(Wet | CurrentLocation=London)P(RainingInLondon | CurrentLocation=London)

Pairwise independence does not imply complete independence

- X is a coin flip, Y is a coin flip, $Z=X$ xor Y
- Clearly $\mathrm{P}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \neq \mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y}) \mathrm{P}(\mathrm{Z})$
- But $P(Z \mid X)=P(Z)$
- Tempting to say X and Y are "really" independent, X and Z are "not really" independent
- But: X is a coin flip, Z is a coin flip, $\mathrm{Y}=\mathrm{X}$ xor Z gives the exact same distribution

Monty Hall problem

- Game show participants can choose one of three doors
- One door has a car, two have a goat
- Assumption: car is preferred to goat
- Participant chooses door, but not opened yet
- At least one of the other doors contains a goat; the (knowing) host will open one such door (flips coin to decide if both have goats)
- Participant is asked whether she wants to switch doors (to the other closed door) - should she?

Sleeping Beauty problem

- There is a participant in a study (call her Sleeping Beauty)
- On Sunday, she is given drugs to fall asleep
- A coin is tossed (H or T)
- If H, she is awoken on Monday, then made to sleep again
- If T, she is awoken Monday, made to sleep again, then again awoken on Tuesday

Sunday Monday Tuesday

- Due to drugs she cannot remember what day it is or whether she has already been awoken once, but she remembers all the rules
- You're SB and you've just been awoken. What is your (subjective) probability that the coin came up H ?

Expected value

- If Z takes numerical values, then the expected value of Z is $E(Z)=\sum_{z} P(Z=z)^{*} z$
- Weighted average (weighted by probability)
- Suppose Z is sum of two dice
- $E(Z)=(1 / 36)^{*} 2+(2 / 36)^{*} 3+(3 / 36)^{*} 4+(4 / 36)^{*} 5+$
$(5 / 36)^{*} 6+(6 / 36)^{*} 7+(5 / 36)^{*} 8+(4 / 36)^{*} 9+(3 / 36)^{*} 10$
$+(2 / 36)^{*} 11+(1 / 36)^{*} 12=7$
- Simpler way: $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$ (always!)
- Linearity of expectation
- $E(X)=E(Y)=3.5$

Linearity of expectation...

- If a is used to represent an atomic state, then $E(X)=\sum_{x} P(X=x)^{*} x=\sum_{x}\left(\sum_{a: X(a)=x} P(a)\right)^{*} x$ $=\sum_{a} P(a)^{*} X(a)$
- $E(X+Y)=\sum_{a} P(a)^{*}(X(a)+Y(a))=\sum_{a} P(a)^{*} X(a)+$
$\sum_{a} P(a)^{*} Y(a)=E(X)+E(Y)$

What is probability, anyway?

- Different philosophical positions:
- Frequentism: numbers only come from repeated experiments
- As we flip a coin lots of times, we see experimentally that it comes out heads $1 / 2$ the time
- Problem: for most events in the world, there is no history of exactly that event happening
- Probability that the Democratic candidate wins the next election?

Objectivism: probabilities are a real part of the universe

- Maybe true at level of quantum mechanics
- Most of us agree that the result of a coin flip is (usually) determined by initial conditions + classical mechanics
- Subjectivism: probabilities merely reflect agents' beliefs

