
CPS 570: Artificial Intelligence

Search

Instructor: Vincent Conitzer

Rubik’s Cube robot

• https://www.youtube.com/watch?v=iBE46R-fD6M

https://www.youtube.com/watch?v=iBE46R-fD6M

Search
• We have some actions that can change the state

of the world

– Change induced by an action is perfectly predictable

• Try to come up with a sequence of actions that will

lead us to a goal state

– May want to minimize number of actions

– More generally, may want to minimize total cost of actions

• Do not need to execute actions in real life while

searching for solution!

– Everything perfectly predictable anyway

A simple example:

traveling on a graph

A

B

C

F

D E
3 4

4

3

9

2

2

start state

goal state

Searching for a solution

A

B

C

F

D
3

3

9

2

2

start state

goal state

Search tree
state = A,

cost = 0

state = B,

cost = 3

state = D,

cost = 3

state = C,

cost = 5

state = F,

cost = 12

state = A,

cost = 7

goal state!

search tree nodes and states are not the same thing!

Full search tree
state = A,

cost = 0

state = B,

cost = 3

state = D,

cost = 3

state = C,

cost = 5

state = F,

cost = 12

state = A,

cost = 7

goal state!

state = E,

cost = 7

state = F,

cost = 11

goal state!

state = B,

cost = 10

state = D,

cost = 10...
...

Changing the goal:

want to visit all vertices on the graph

A

B

C

F

D E
3 4

4

3

9

2

2

need a different definition of a state

“currently at A, also visited B, C already”

large number of states: n*2n-1

could turn these into a graph, but…

Full search tree
state = A, {}

cost = 0

state = B, {A}

cost = 3

state = D, {A}

cost = 3

state = C, {A, B}

cost = 5

state = F, {A, B}

cost = 12

state = A, {B, C}

cost = 7

state = E, {A, D}

cost = 7

state = F, {A, D, E}

cost = 11

state = B, {A, C}

cost = 10

state = D, {A, B, C}

cost = 10

...
...

What would happen if the

goal were to visit every

location twice?

Key concepts in search
• Set of states that we can be in

– Including an initial state…

– … and goal states (equivalently, a goal test)

• For every state, a set of actions that we can take

– Each action results in a new state

– Typically defined by successor function

• Given a state, produces all states that can be reached from it

• Cost function that determines the cost of each

action (or path = sequence of actions)

• Solution: path from initial state to a goal state

– Optimal solution: solution with minimal cost

8-puzzle

1 2 3

4 5 6

7 8

1 2

4 5 3

7 8 6

goal state

8-puzzle
1 2

4 5 3

7 8 6

1 5 2

4 3

7 8 6

1 2

4 5 3

7 8 6

1 2

4 5 3

7 8 6

...
...

Generic search algorithm
• Fringe = set of nodes generated but not expanded

• fringe := {node with initial state}

• loop:

– if fringe empty, declare failure

– choose and remove a node v from fringe

– check if v’s state s is a goal state; if so, declare success

– if not, expand v, insert resulting nodes into fringe

• Key question in search: Which of the generated

nodes do we expand next?

Uninformed search

• Given a state, we only know whether it is a goal

state or not

• Cannot say one nongoal state looks better than

another nongoal state

• Can only traverse state space blindly in hope of

somehow hitting a goal state at some point

– Also called blind search

– Blind does not imply unsystematic!

Breadth-first search

Properties of breadth-first search

• Nodes are expanded in the same order in which they are

generated

– Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is complete: if a solution exists, one will be found

• BFS finds a shallowest solution

– Not necessarily an optimal solution

• If every node has b successors (the branching factor),

first solution is at depth d, then fringe size will be at least

bd at some point

– This much space (and time) required 

Depth-first search

Implementing depth-first search

• Fringe can be maintained as a Last-In-First-Out (LIFO)

queue (aka. a stack)

• Also easy to implement recursively:

• DFS(node)

– If goal(node) return solution(node);

– For each successor of node

• Return DFS(successor) unless it is failure;

– Return failure;

Properties of depth-first search

• Not complete (might cycle through nongoal states)

• If solution found, generally not optimal/shallowest

• If every node has b successors (the branching

factor), and we search to at most depth m, fringe

is at most bm

– Much better space requirement ☺

– Actually, generally don’t even need to store all of fringe

• Time: still need to look at every node

– bm + bm-1 + … + 1 (for b>1, O(bm))

– Inevitable for uninformed search methods…

Combining good properties of BFS and DFS

• Limited depth DFS: just like DFS, except never go deeper

than some depth d

• Iterative deepening DFS:

– Call limited depth DFS with depth 0;

– If unsuccessful, call with depth 1;

– If unsuccessful, call with depth 2;

– Etc.

• Complete, finds shallowest solution

• Space requirements of DFS

• May seem wasteful timewise because replicating effort

– Really not that wasteful because almost all effort at deepest level

– db + (d-1)b2 + (d-2)b3 + ... + 1bd is O(bd) for b > 1

Let’s start thinking about cost
• BFS finds shallowest solution because always works on

shallowest nodes first

• Similar idea: always work on the lowest-cost node first

(uniform-cost search)

• Will find optimal solution (assuming costs increase by at

least constant amount along path)

• Will often pursue lots of short steps first

• If optimal cost is C, and cost increases by at least L each

step, we can go to depth C/L

• Similar memory problems as BFS

– Iterative lengthening DFS does DFS up to increasing costs

Searching backwards from the goal

• Sometimes can search backwards from the goal

– Maze puzzles

– Eights puzzle

– Reaching location F

– What about the goal of “having visited all locations”?

• Need to be able to compute predecessors instead

of successors

• What’s the point?

Predecessor branching factor can be

smaller than successor branching factor

• Stacking blocks:

– only action is to add something to the stack

A

B

C

In hand: nothingIn hand: A, B, C

Start state Goal state

We’ll see more of this…

Bidirectional search
• Even better: search from both the start and the

goal, in parallel!

• If the shallowest solution has depth d and

branching factor is b on both sides, requires only

O(bd/2) nodes to be explored!

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

Making bidirectional search work

• Need to be able to figure out whether the fringes

intersect

– Need to keep at least one fringe in memory…

• Other than that, can do various kinds of search on

either tree, and get the corresponding optimality

etc. guarantees

• Not possible (feasible) if backwards search not

possible (feasible)

– Hard to compute predecessors

– High predecessor branching factor

– Too many goal states

Repeated states

• Repeated states can cause incompleteness or enormous

runtimes

• Can maintain list of previously visited states to avoid this

– If new path to the same state has greater cost, don’t pursue it further

– Leads to time/space tradeoff

• “Algorithms that forget their history are doomed to repeat

it” [Russell and Norvig]

A

B

C

3

2

2

cycles exponentially large search trees (try it!)

Informed search

• So far, have assumed that no nongoal state looks

better than another

• Unrealistic

– Even without knowing the road structure, some locations

seem closer to the goal than others

– Some states of the 8s puzzle seem closer to the goal than

others

• Makes sense to expand closer-seeming nodes

first

Heuristics
• Key notion: heuristic function h(n) gives an estimate of

the distance from n to the goal

– h(n)=0 for goal nodes

• E.g. straight-line distance for traveling problem

A

B

C

F

D E
3 4

4

3

9

2

2

start state

goal state

• Say: h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0

• We’re adding something new to the problem!

• Can use heuristic to decide which nodes to expand first

Greedy best-first search
• Greedy best-first search: expand nodes with lowest h

values first

• Rapidly finds the optimal solution!

• Does it always?

state = A,

cost = 0, h = 9

state = B,

cost = 3, h = 8

state = D,

cost = 3, h = 6

goal state!

state = E,

cost = 7, h = 3

state = F,

cost = 11, h = 0

A bad example for greedy

A

B

F

D E
3 4

4

7 6

start state

goal state

• Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0

• Problem: greedy evaluates the promise of a node only by

how far is left to go, does not take cost occurred already

into account

A*

A

B

F

D E
3 4

4

7 6

start state

goal state

• Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0

• Note: if h=0 everywhere, then just uniform cost search

• Let g(n) be cost incurred already on path to n

• Expand nodes with lowest g(n) + h(n) first

Admissibility

• A heuristic is admissible if it never overestimates

the distance to the goal

– If n is the optimal solution reachable from n’, then g(n) ≥

g(n’) + h(n’)

• Straight-line distance is admissible: can’t hope for

anything better than a straight road to the goal

• Admissible heuristic means that A* is always

optimistic

Optimality of A*
• If the heuristic is admissible, A* is optimal (in the

sense that it will never return a suboptimal solution)

• Proof:

– Suppose a suboptimal solution node n with solution

value C > C* is about to be expanded (where C* is

optimal)

– Let n* be an optimal solution node (perhaps not yet

discovered)

– There must be some node n’ that is currently in the

fringe and on the path to n*

– We have g(n) = C > C* = g(n*) ≥ g(n’) + h(n’)

– But then, n’ should be expanded first (contradiction)

A* is not complete (in contrived examples)

A

B

FD …start state

goal state

• No optimal search algorithm can succeed on this

example (have to keep looking down the path in hope of

suddenly finding a solution)

C E

infinitely many nodes on a straight path to the

goal that doesn’t actually reach the goal

Consistency
• A heuristic is consistent if the following holds: if one

step takes us from n to n’, then h(n) ≤ h(n’) + cost of

step from n to n’

– Similar to triangle inequality

– Equivalently, g(n)+h(n) ≤ g(n’)+h(n’)

• Implies admissibility

• It’s strange for an admissible heuristic not to be

consistent!

– Suppose g(n)+h(n) > g(n’)+h(n’). Then at n’, we know

the remaining cost is at least h(n)-(g(n’)-g(n)), otherwise

the heuristic wouldn’t have been admissible at n. But

then we can safely increase h(n’) to this value.

A* is optimally efficient
• A* is optimally efficient in the sense that any other

optimal algorithm must expand at least the nodes

A* expands, if the heuristic is consistent

• Proof:

– Besides solution, A* expands exactly the nodes with

g(n)+h(n) < C* (due to consistency)

• Assuming it does not expand non-solution nodes with g(n)+h(n) = C*

– Any other optimal algorithm must expand at least these

nodes (since there may be a better solution there)

• Note: This argument assumes that the other

algorithm uses the same heuristic h

A* and repeated states
• Suppose we try to avoid repeated states

• Ideally, the second (or third, …) time that we

reach a state the cost is at least as high as

the first time

– Otherwise, have to update everything that came

after

• This is guaranteed if the heuristic is consistent

Proof
• Suppose n and n’ correspond to same state, n’ is

cheaper to reach, but n is expanded first

• n’ cannot have been in the fringe when n was

expanded because g(n’) < g(n), so

– g(n’) + h(n’) < g(n) + h(n)

• So n’ is generated (eventually) from some other

node n’’ currently in the fringe, after n is expanded

– g(n) + h(n) ≤ g(n’’) + h(n’’)

• Combining these, we get

– g(n’) + h(n’) < g(n’’) + h(n’’), or equivalently

– h(n’’) > h(n’) + cost of steps from n’’ to n’

• Violates consistency

Iterative Deepening A*
• One big drawback of A* is the space requirement:

similar problems as uniform cost search, BFS

• Limited-cost depth-first A*: some cost cutoff c, any

node with g(n)+h(n) > c is not expanded,

otherwise DFS

• IDA* gradually increases the cutoff of this

• Can require lots of iterations

– Trading off space and time…

– RBFS algorithm reduces wasted effort of IDA*, still linear space

requirement

– SMA* proceeds as A* until memory is full, then starts doing

other things

More about heuristics

• One heuristic: number of misplaced tiles

• Another heuristic: sum of Manhattan distances of tiles to
their goal location
– Manhattan distance = number of moves required if no other tiles

are in the way

• Admissible? Which is better?

• Admissible heuristic h1 dominates admissible heuristic h2 if
h1(n) ≥ h2(n) for all n
– Will result in fewer node expansions

• “Best” heuristic of all: solve the remainder of the problem
optimally with search
– Need to worry about computation time of heuristics…

1 2

4 5 3

7 8 6

Designing heuristics
• One strategy for designing heuristics: relax the problem

(make it easier)

• “Number of misplaced tiles” heuristic corresponds to

relaxed problem where tiles can jump to any location,

even if something else is already there

• “Sum of Manhattan distances” corresponds to relaxed

problem where multiple tiles can occupy the same spot

• Another relaxed problem: only move 1,2,3,4 into correct

locations

• The ideal relaxed problem is

– easy to solve,

– not much cheaper to solve than original problem

• Some programs can successfully automatically create

heuristics

Macro-operators
• Perhaps a more human way of thinking about

search in the eights puzzle:

8 2 1

7 3

6 5 4

1 2 3

8 4

7 6 5
sequence of operations =

macro-operation

• We swapped two adjacent tiles, and rotated

everything

• Can get all tiles in the right order this way

– Order might still be rotated in one of eight different ways;

could solve these separately

• Optimality?

• Can AI think about the problem this way? Should it?

