CPS 570: Artificial Intelligence

Search

Instructor: Vincent Conitzer

Rubik's Cube robot

https://www.youtube.com/watch?v=iBE46R-fD6M

Search

* WWe have some actions that can change the state
of the world

— Change induced by an action is perfectly predictable
* Try to come up with a sequence of actions that will
lead us to a goal state
— May want to minimize number of actions
— More generally, may want to minimize total cost of actions
* Do not need to execute actions in real life while
searching for solution!

— Everything perfectly predictable anyway

A simple example:
traveling on a graph

0.2
) (B)

Searching for a solution

G 2
2 (B 9
3
start state (A @ goal state
3 (2

Search tree

state = A,
cost=10

state = B, state = D,
cost=3 cost=3
state = C, O state = F,
cost=3 cost=12
goal state!

state = A,
cost="7

search tree nodes and states are not the same thing!

Full search tree

state = A,
cost=20

state = B,
cost=3

state = D,
cost=3

state = C, O state = K, state = E,
cost=5 cost=12 cost="7

goal state!
state = A, state = F,
cost="7 cost =11
goal state!
state = B, state = D,
cost=10 cost=10

Changing the goal:
want to visit all vertices on the graph
)2
2 O ’

3 (E
3 44

need a different definition of a state
“currently at A, also visited B, C already”
large number of states: n*2-!
could turn these 1nto a graph, but...

Full search tree

state = A, {}
cost=10

state = B, {A} state = D, {A}

cost=3 cost=3
state = F, {A, B}
cost =12 state = E, {A, D}
cost=17

state = A, {B, C}

state =F, {A, D, E}
cost="17
cost =11

state =D, {A, B, C}

state = B, {A, C} cost =10

cost =10

What would happen if the

goal were to visit every

location twice?

Key concepts In search
Set of states that we can be in

— Including an initial state...

— ... and goal states (equivalently, a goal test)

For every state, a set of actions that we can take

— Each action results in a new state

— Typically defined by successor function

» Given a state, produces all states that can be reached from it

Cost function that determines the cost of each
action (or path = sequence of actions)

Solution: path from initial state to a goal state

— Optimal solution: solution with minimal cost

3-puzzle

112 1| 3
4 1 5| 6
/7 | 8

goal state

3-puzzle

1 2
4 3
7 6
ORI
4 |5
7|18 6
[
L
[

Generic search algorithm
Fringe = set of nodes generated but not expanded

fringe := {node with initial state}

loop:

— If fringe empty, declare failure

— choose and remove a node v from fringe

— check if v's state s is a goal state; if so, declare success

— iIf not, expand v, insert resulting nodes into fringe

Key question in search: Which of the generated
nodes do we expand next?

Uninformed search

» Given a state, we only know whether it is a goal
state or not

» Cannot say one nongoal state looks better than
another nongoal state

» Can only traverse state space blindly in hope of
somehow hitting a goal state at some point

— Also called blind search

— Blind does not imply unsystematic!

Breadth-first search

L db 4N

Properties of breadth-first search

Nodes are expanded in the same order in which they are
generated

— Fringe can be maintained as a First-In-First-Out (FIFO) queue

BFS is complete: if a solution exists, one will be found

BFS finds a shallowest solution

— Not necessarily an optimal solution

If every node has b successors (the branching factor),
first solution is at depth d, then fringe size will be at least
bd at some point

— This much space (and time) required ®

Depth-first search

L db 4N

Implementing depth-first search

* Fringe can be maintained as a Last-In-First-Out (LIFO)
queue (aka. a stack)

* Also easy to implement recursively:

 DFS(node)
— If goal(node) return solution(node);

— For each successor of node

« Return DFS(successor) unless it is failure;

— Return failure;

Properties of depth-first search

Not complete (might cycle through nongoal states)
If solution found, generally not optimal/shallowest

If every node has b successors (the branching
factor), and we search to at most depth m, fringe
IS at most bm

— Much better space requirement ©

— Actually, generally don’t even need to store all of fringe
Time: still need to look at every node
—bm+b™! + .+ 1 (for b>1, O(b™))

— Inevitable for uninformed search methods...

Combining good properties of BFS and DFS

Limited depth DFS: just like DFS, except never go deeper
than some depth d

Iterative deepening DFS:
— Call limited depth DFS with depth O;

— If unsuccessful, call with depth 1;

— If unsuccessful, call with depth 2;
— Etc.

Complete, finds shallowest solution
Space requirements of DFS

May seem wasteful timewise because replicating effort

— Really not that wasteful because almost all effort at deepest level
— db + (d-1)b? + (d-2)b® + ... + 1b%is O(bd) for b > 1

Let's start thinking about cost

BFS finds shallowest solution because always works on
shallowest nodes first

Similar idea: always work on the lowest-cost node first
(uniform-cost search)

Will find optimal solution (assuming costs increase by at
least constant amount along path)

Will often pursue lots of short steps first

If optimal cost is C, and cost increases by at least L each
step, we can go to depth C/L

Similar memory problems as BFS

— lterative lengthening DFS does DFS up to increasing costs

Searching backwards from the goal

« Sometimes can search backwards from the goal
— Maze puzzles
— Eights puzzle
— Reaching location F

— What about the goal of “having visited all locations™?

* Need to be able to compute predecessors instead
of successors

 What's the point?

Predecessor branching factor can be

smaller than successor branching factor
» Stacking blocks:

—only action is to add something to the stack

In hand: A, B, C In hand: nothing

Start state Goal state

We’ll see more of this...

Bidirectional search
 Even better: search from both the start and the

goal, in parallel!

W &@9
£ @

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

* |f the shallowest solution has depth d and
branching factor is b on both sides, requires only
O(b%?) nodes to be explored!

Making bidirectional search work

* Need to be able to figure out whether the fringes
intersect

— Need to keep at least one fringe in memory...

* Other than that, can do various kinds of search on
either tree, and get the corresponding optimality
etc. guarantees

* Not possible (feasible) if backwards search not
possible (feasible)
— Hard to compute predecessors
— High predecessor branching factor

— Too many goal states

Repeated states

cycles exponentially large search trees (try it!)

Repeated states can cause incompleteness or enormous

runtimes
Can maintain list of previously visited states to avoid this
— If new path to the same state has greater cost, don’t pursue it further

— Leads to time/space tradeoff
“Algorithms that forget their history are doomed to repeat

it” [Russell and Norvig]

Informed search

» So far, have assumed that no nongoal state looks
better than another

« Unrealistic

— Even without knowing the road structure, some locations
seem closer to the goal than others

— Some states of the 8s puzzle seem closer to the goal than
others

* Makes sense to expand closer-seeming nodes
first

Heuristics

Key notion: heuristic function h(n) gives an estimate of
the distance from n to the goal

— h(n)=0 for goal nodes

E.g. straight-line distance for traveling problem

Say: h(A)=9, h(B)=8,h(C)=9, h(D)=6, h(E)=3, h(F) =0
We're adding something new to the problem!

Can use heuristic to decide which nodes to expand first

Greedy best-first search

» Greedy best-first search: expand nodes with lowest h

state = A,
cost=0,h=9

values first

state = B,

O cost=3,h=S8

state = D,
cost=3,h=6

state = E,
cost=7,h=3

state = F,
. . . . O t=11,h=0
» Rapidly finds the optimal solution! - goal state!

* Does it always?

A bad example for greedy

@ goal state
start state

» Say: h(A) =9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0

* Problem: greedy evaluates the promise of a node only by
how far is left to go, does not take cost occurred already
into account

A*
* Let g(n) be cost incurred already on path to n

* Expand nodes with lowest g(n) + h(n) first

start state

» Say: h(A)=9, h(B) =5, h(D) = 6, h(E) = 3, h(F) = 0

* Note: if h=0 everywhere, then just uniform cost search

Admissibility

* A heuristic is admissible if it never overestimates
the distance to the goal
— If n is the optimal solution reachable from n’, then g(n) =
g(n’) + h(n’)
» Straight-line distance is admissible: can’t hope for
anything better than a straight road to the goal

* Admissible heuristic means that A* is always
optimistic

Optimality of A*

* |f the heuristic is admissible, A* is optimal (in the
sense that it will never return a suboptimal solution)

* Proof:

— Suppose a suboptimal solution node n with solution
value C > C* is about to be expanded (where C* is
optimal)

— Let n* be an optimal solution node (perhaps not yet
discovered)

— There must be some node n’ that is currently in the
fringe and on the path to n*

— We have g(n)=C >C*=g(n*) 2g(n’) + h(n’)
— But then, n’ should be expanded first (contradiction)

A* i1s not complete (in contrived examples)

start state 2k ‘

—

infinitely many nodes on a straight path to the

goal state

goal that doesn’t actually reach the goal

* No optimal search algorithm can succeed on this
example (have to keep looking down the path in hope of
suddenly finding a solution)

Consistency

* A heuristic is consistent if the following holds: if one

step takes us from n to n’, then h(n) < h(n’) + cost of
step fromnton’

— Similar to triangle inequality
— Equivalently, g(n)+h(n) < g(n’)+h(n’)

* Implies admissibility

e It's

strange for an admissible heuristic not to be

consistent!
— Suppose g(n)+h(n) > g(n’)+h(n’). Then atn’, we know

t
t
t

e remaining cost is at least h(n)-(g(n’)-g(n)), otherwise
ne heuristic wouldn’t have been admissible at n. But

nen we can safely increase h(n’) to this value.

A* is optimally efficient
* A* is optimally efficient in the sense that any other

optimal algorithm must expand at least the nodes
A* expands, if the heuristic is consistent

* Proof:

— Besides solution, A* expands exactly the nodes with
g(n)+h(n) < C* (due to consistency)

« Assuming it does not expand non-solution nodes with g(n)+h(n) = C*

— Any other optimal algorithm must expand at least these
nodes (since there may be a better solution there)

* Note: This argument assumes that the other
algorithm uses the same heuristic h

A* and repeated states
* Suppose we try to avoid repeated states

» |deally, the second (or third, ...) time that we
reach a state the cost is at least as high as
the first time

— Otherwise, have to update everything that came
after

* This is guaranteed if the heuristic is consistent

Proof

Suppose n and n’ correspond to same state, n’ is
cheaper to reach, but n is expanded first

n’ cannot have been in the fringe when n was
expanded because g(n’) < g(n), so

—g(n’) + h(n’) < g(n) + h(n)
So n’ is generated (eventually) from some other
node n” currently in the fringe, after n is expanded

—g(n) + h(n) = g(n”) + h(n")
Combining these, we get
—g(n’) + h(n’) < g(n”) + h(n”), or equivalently
— h(n”) > h(n’) + cost of steps from n” to n’
* Violates consistency

lterative Deepening A*

One big drawback of A* is the space requirement:
similar problems as uniform cost search, BFS

Limited-cost depth-first A*: some cost cutoff ¢, any
node with g(n)+h(n) > c is not expanded,
otherwise DFS

IDA* gradually increases the cutoff of this

Can require lots of iterations

— Trading off space and time...

— RBFS algorithm reduces wasted effort of IDA*, still linear space
requirement

— SMA* proceeds as A* until memory is full, then starts doing
other things

More about heuristics

1 2
4 | 51| 3
/7 | 8 | 6
One heuristic: number of misplaced tiles

Another heuristic: sum of Manhattan distances of tiles to
their goal location

— Manhattan distance = number of moves required if no other tiles
are in the way

Admissible? Which 1s better?
Admissible heuristic h; dominates admissible heuristic h, 1f
h,(n) 2 h,(n) for all n

— Will result in fewer node expansions

“Best” heuristic of all: solve the remainder of the problem
optimally with search

— Need to worry about computation time of heuristics...

Designing heuristics
One strategy for designing heuristics: relax the problem
(make it easier)

“‘Number of misplaced tiles” heuristic corresponds to
relaxed problem where tiles can jump to any location,
even If something else is already there

“‘Sum of Manhattan distances” corresponds to relaxed
problem where multiple tiles can occupy the same spot

Another relaxed problem: only move 1,2,3,4 into correct
locations

The ideal relaxed problem is

— easy to solve,

— not much cheaper to solve than original problem

Some programs can successfully automatically create
heuristics

Macro-operators

* Perhaps a more human way of thinking about
search in the eights puzzle:

112 | 3 8 | 2 | 1

3 4 - / 3

sequence of operations =

/7 | 6 | 95 6 | 5| 4

macro-operation

* We swapped two adjacent tiles, and rotated
everything

* Can get all tiles 1n the right order this way

— Order might still be rotated 1in one of eight different ways;
could solve these separately

* Optimality?
 Can Al think about the problem this way? Should it?

