Markov Decision Processes (MDPs)

Ron Parr
CPS 590.2

The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters
Covered Today

- Decision Theory Review

- MDPs

- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence

- Asked (sort of) by any intelligent person every day
Utility Functions

• A utility function is a mapping from world states to real numbers
• Also called a value function
• Rational or optimal behavior is typically viewed as maximizing expected utility:

$$\max_a \sum_s P(s \mid a) U(s)$$

a = actions, s = states

Swept under the rug today

• Utility of money (assumed 1:1)
• How to determine costs/utilities
• How to determine probabilities
Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- “Who wants to be a millionaire?”

State Representation

Dollar amounts indicate the payoff for getting the question right.

Probabilistic Transitions on Attempt to Answer

- Start $100
- $0
- 1 correct $1,000
- $0
- 2 correct $10K
- $0
- 3 correct $50K
- $0
- $61,100

Downward green arrows indicate the choice to exit the game.

N.B.: These exit transitions should actually correspond to states.

Green indicates profit at exit from game.
Making Optimal Decisions

- Work backwards from future to present

- Consider $50,000 question
 - Suppose $P(\text{correct}) = 1/10$
 - $V(\text{stop}) = $11,100
 - $V(\text{continue}) = 0.9 * $0 + 0.1 * $61.1K = $6.11K$

- Optimal decision stops

Working Backwards

\[V=\$3,749 \quad V=\$4,166 \quad V=\$5,555 \quad V=\$11.1K \]

\[\$100 \quad \rightarrow \quad \$1K \quad \rightarrow \quad \$10K \quad \rightarrow \quad \$50K \]

Red X indicates bad choice
Decision Theory Review

- Provides theory of optimal decisions
- Principle of maximizing utility
- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Covered in Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again.

\[V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1) \]
\[V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2) \]
\[V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3) \]
\[V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100) \]

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

\[V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1) \]
\[V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2) \]
\[V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3) \]
\[V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100) \]
And the solution is...

\[V = \frac{3,749}{10} \]
\[V = \frac{4,166}{2} \]
\[V = \frac{5,555}{4} \]
\[V = \frac{11,11}{10} \]

V = $3,749
V = $4,166
V = $5,555
V = $11,111

w/o cheat

9/10 3/4 1/2 1/10

$-1000

Is this optimal?
How do we find the optimal policy?

The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R(s,a,s') or R(s,a) or R(s)
- Discount factor: \(\gamma \)
- Policy: \(\pi(s) \rightarrow a \)

Objective: **Maximize expected, discounted return**
(decision theoretic optimal behavior)
Applications of MDPs

• AI/Computer Science
 – Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 – Air Campaign Planning (Meleual et al.)
 – Elevator Control (Barto & Crites)
 – Computation Scheduling (Zilberstein et al.)
 – Control and Automation (Moore et al.)
 – Spoken dialogue management (Singh et al.)
 – Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

• Economics/Operations Research
 – Fleet maintenance (Howard, Rust)
 – Road maintenance (Golabi et al.)
 – Packet Retransmission (Feinberg et al.)
 – Nuclear plant management (Rothwell & Rust)
 – Debt collection strategies (Abe et al.)
 – Data center management (DeepMind)
Applications of MDPs

• EE/Control
 – Missile defense (Bertsekas et al.)
 – Inventory management (Van Roy et al.)
 – Football play selection (Patek & Bertsekas)

• Agriculture
 – Herd management (Kristensen, Toft)

• Other
 – Sports strategies
 – Video games

The Markov Assumption

• Let S_t be a random variable for the state at time t

• $P(S_t|A_{t-1}S_{t-1},\ldots,A_0S_0) = P(S_t|A_{t-1}S_{t-1})$

• Markov is special kind of conditional independence

• Future is independent of past given current state
Understanding Discounting

- **Mathematical motivation**
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- **Economic motivation**
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- **Probability of dying**
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ε to state with value 0
 - Equivalent to $1 - \varepsilon$ discount factor

Discounting in Practice

- **Often chosen unrealistically low**
 - Faster convergence of the algorithms we’ll see later
 - Leads to slightly myopic policies

- **Can reformulate most algs. for avg. reward**
 - Mathematically uglier
 - Somewhat slower run time
Covered Today

- Decision Theory
- MDPs

- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

\[V(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V(s') \]

Bellman Equation for a fixed policy \(\pi\)

Determine the value of each state under policy \(\pi\)

\[V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3)) \]
Matrix Form

\[P = \begin{pmatrix}
 P(s_1 | s_1, \pi(s_1)) & P(s_2 | s_1, \pi(s_1)) & P(s_3 | s_1, \pi(s_1)) \\
 P(s_1 | s_2, \pi(s_2)) & P(s_2 | s_2, \pi(s_2)) & P(s_3 | s_2, \pi(s_2)) \\
 P(s_1 | s_3, \pi(s_3)) & P(s_2 | s_3, \pi(s_3)) & P(s_3 | s_3, \pi(s_3))
\end{pmatrix} \]

\[V = \gamma P \pi V + R \]

This is a generalization of the game show example from earlier

How do we solve this system efficient? Does it even have a solution?

Solving for Values

\[V = \gamma P \pi V + R \]

For moderate numbers of states we can solve this system exacty:

\[V = (I - \gamma P \pi)^{-1} R \]

Guaranteed invertible because \(\gamma P \pi \)
has spectral radius < 1
Iteratively Solving for Values

\[V = \gamma P \pi V + R \]

For larger numbers of states we can solve this system indirectly:

\[V^{i+1} = \gamma P \pi V^i + R \]

Guaranteed convergent because \(\gamma P \pi \) has spectral radius \(<1 \)

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...
Contraction Analysis

• Define maximum norm
 \[\| \mathbf{V} \|_\infty = \max_i V^i \]

• Consider V1 and V2
 \[\| V^a_i - V^b_i \|_\infty = \varepsilon \]

• WLOG say
 \[V^a_i \leq V^b_i + \vec{\varepsilon} \] (Vector of all \(\varepsilon \)'s)

Contraction Analysis Contd.

• At next iteration for \(V^b \):
 \[V^b_2 = R + \gamma PV^1_1 \]

• For \(V^a \)
 \[V^a_2 = R + \gamma P \left(V^a_1 \right) \leq R + \gamma P \left(V^b_1 + \vec{\varepsilon} \right) = R + \gamma PV^b_1 + \gamma P \vec{\varepsilon} = R + \gamma PV^b_1 + \gamma \vec{\varepsilon} \]

• Conclude:
 \[\| V^a_2 - V^b_2 \|_\infty \leq \gamma \varepsilon \]
Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point (value doesn’t change with iteration)
- Max norm distance from V* decreases dramatically quickly with iterations

\[\| V_0 - V^* \|_\infty = \varepsilon \rightarrow \| V_n - V^* \|_\infty \leq \gamma^n \varepsilon \]

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming
Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[V(S1) = 10 \quad V(S2) = 5 \]

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[
V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')
\]

Decision theoretic optimal choice given \(V^*\)
If we know \(V^*\), picking the optimal action is easy
If we know the optimal actions, computing \(V^*\) is easy
How do we compute both at the same time?
Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

• Called value iteration or simply successive approximation
• Same as value determination, but we can change actions

• Convergence:
 • Can’t do eigenvalue analysis (not linear)
 • Still monotonic
 • Still a contraction in max norm (exercise)
 • Converges quickly

Properties of Value Iteration

• VI converges to the optimal policy
 (implicit in the maximizing action at each state)

• Why? (Because we figure out \(V^* \))

• Optimal policy is stationary (i.e. Markovian – depends only on current state)

• Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$
\pi_v(s) = \arg\max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')
$$

Expectation over next-state values

$$
\pi_v = \text{greedy}(V)
$$
Consider our first policy

V=$3.7K V=$4.1K V=$5.6K V=$11.1K w/o cheat

Recall: We played until last state, then quit
Is this greedy with cheat option?

Value of paying to cheat in the first state is:
0.1(-1000 + 3.7K) + 0.9*(4.1K)=$3960
(much better than just giving up, which has value 0)

Bank

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess \(\pi_v = \pi_0 \)
\(V_\pi = \text{value of acting on } \pi \)
(solve linear system)
\(\pi_v \leftarrow \text{greedy}(V_\pi) \)

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part
Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy *may* change at every step
 - Many cheap iterations
- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy *exactly*
 - Fewer, slower iterations (need to invert matrix)
- **Convergence**
 - Both are contractions in max norm
 - PI is *shockingly* fast in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn’t prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~ 50 years after the algorithm was introduced
Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Linear Programming Review

- Minimize: \(c^T x \)
- Subject to: \(Ax \geq b \)
- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history
Linear Programming

\[V(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s' | s, a) V(s') \]

Issue: Turn the non-linear max into a collection of linear constraints

\[\forall s, a : V(s) \geq R(s, a) + \gamma \sum_{s'} P(s' | s, a) V(s') \]

MINIMIZE: \[\sum_s V(s) \]

Optimal action has tight constraints

Weakly polynomial; slower than PI in practice
(though can be modified to behave like PI)