Lecture 10

1 Overview

Last class we saw the congestion minimization problem. Given a graph $G=(V, E)$ and set of n pairs of vertices $\left(s_{i}, t_{i}\right)$ we want to choose paths connecting the pairs, so that the number of times any edge appears along a path is minimized.

We had the following LP

$$
\begin{array}{rr}
\min \lambda & \text { such that } \\
\sum_{p \in P_{i}} X_{p} \geq 1 & \text { and } \\
\sum_{i} \sum_{p \in P_{i}, e \in p} x_{p} \leq \lambda & \text { for each edge } e \\
x_{p} \geq 0 &
\end{array}
$$

We saw a randomized rounding algorithm in which for each set of paths P_{i} we choose one path, each with probability proportional to x_{p}. We finish analyzing the algorithm in this lecture, and show a randomized rounding algorithm for approximating MAX-SAT as well.

2 Congestion Minimization Continued

2.1 Chernoff Bounds

In this subsection, we will see two chernoff bounds (without proof) which we will use to analyze our randomized algorithm for congestion minimization.

Theorem 1. If X_{1}, \ldots, X_{n} are independant random boolean variables (each takes on value 0 or 1), with

$$
\mu=\sum_{i} \mathbb{E}\left[X_{i}\right]
$$

then,

$$
\begin{array}{rlr}
\operatorname{Pr}\left[\sum_{i} X_{i} \geq(1+\varepsilon) \mu\right] & \leq\left(\frac{e^{\varepsilon}}{(1+\varepsilon)^{(1+\varepsilon)}}\right)^{\mu} & \\
\operatorname{Pr}\left[\sum_{i} X_{i} \geq(1+\varepsilon) \mu\right] \leq e^{-\varepsilon^{2} \mu / c} & \text { if } 0<\varepsilon<1, \text { for some constant } c \tag{2}
\end{array}
$$

2.2 Application to Minimum Congestion

Let

$$
X_{i}^{e} \begin{cases}1 & \text { if }\left(s_{i}, t_{i}\right) \text { path chosen contains } e \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\mathbb{E}\left[X_{i}^{e}\right]=\sum_{p \in P_{i} \mid e \in p} X_{p} .
$$

Since $\lambda \geq \mu$

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{i} X_{i}^{e} \geq(1+\varepsilon) \lambda\right] & \leq\left(\frac{e^{\varepsilon}}{(1+\varepsilon)^{(1+\varepsilon)}}\right)^{\lambda} \\
& \leq\left(\frac{1}{\left(\frac{1+\varepsilon}{e}\right)^{1+\varepsilon}}\right)^{\lambda}
\end{aligned}
$$

Since there are $O\left(n^{2}\right)$ possible edges, we want this bound to be $1 / n^{c}$ for $c \geq 3$ so we can use a union bound over all edges. If we don't know anything about λ we will choose $(1+\varepsilon)=O\left(\frac{\log n}{\log \log n}\right)$, giving us an $O\left(\frac{\log n}{\log \log n}\right)$-approximation.

However suppose $\lambda \geq \log n$, then to get the desired bound we only need $(1+\varepsilon)$ to be some constant, giving a constant approximation.

3 MAX-SAT

For the max-sat problem, we are given a collection of m clauses $\left\{C_{j}\right\}$ containing n literals. Each clause is a disjunction of literals: for example we might have $C_{1}=\left(X_{1} \vee \overline{X_{2}} \vee X_{3}\right)$. The goal is to give an assignment (true or false) to each literal which maximizes the number of clauses which are satisfied, that is evaluate to true.

A naive randomized algorithm would be to assign each literal X_{i} true with probability $1 / 2$. If clause C_{j} has ℓ_{j} literals,

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right]=1-1 / 2^{\ell_{j}} .
$$

In expectation at least $m / 2$ clauses will be satisfied, giving a 2 -approximation. We observe that as clauses become longer, this bound becomes better.

Remark 1. In fact for 3-SAT it can be shown that one cannot do better than the 7/8-approximation given by this algorithm, unless $P=N P$.

However if every clause contained only 1 literal, we could get the optimal solution by assigning each literal to true if it appears positively in more clauses, otherwise false if it appears as a negation in more clauses. This suggests that we need to utilize the bound on opt to get a better bound on our approximation.

We can write a LP for this problem, letting z_{j} be a variable denoting if C_{j} is satisfied, y_{i} denote if literal X_{i} is true, P_{j} be the set of positive literals in C_{j} and N_{j} the negative.

$$
\begin{gathered}
\max \sum z_{i} \\
\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} \text { for each } j \\
0 \leq y_{i} \leq 1 \\
0 \leq z_{j} \leq 1
\end{gathered}
$$

Given the fractional optimal solution to the LP we can round this by setting x_{i} to true with probability y_{i}^{*}. Then we have

$$
\operatorname{Pr}\left[C_{j} \text { is sat. }\right] \geq 1-\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}
$$

The arithmetic-mean geometric-mean inequality says that

$$
\frac{\sum_{i=1}^{n} a_{i}}{n} \geq\left(\prod_{i=1}^{n} a_{i}\right)^{(1 / n)}
$$

Using this we have

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { is sat. }\right] & \geq 1-\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{1 / \ell_{j}} \\
& =1+\left[\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)-\frac{\left|P_{i}\right|}{\ell_{j}}-\frac{\left|N_{j}\right|}{\ell_{j}}\right]^{\ell_{j}} \\
& \geq 1-\left[1-\frac{1}{\ell_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{\ell_{j}} \\
& \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}
\end{aligned}
$$

Letting $f\left(z_{j}^{*}\right)=1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}}$ we can see that f is a concave function, with $f(0)=0 f(1)=\left(1-1 / \ell_{j}\right)^{\ell_{j}}$ so we have that

$$
f\left(z_{j}^{*} \geq\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right) z_{j}^{*} \geq(1-1 / e) z_{j}^{*} .\right.
$$

We note that the LP-algorithm does better when the clauses are short. So we will combine our two algorithms: simply run both and take the solution which has more clauses maximized.

To analyze this hybrid algorithm, we see that choosing the better of the two is at least as good as picking each algorithm with probability $1 / 2$.

Then we have

$$
\operatorname{Pr}\left[C_{j} \text { is sat. }\right] \geq 1-\frac{1}{2}\left(\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}+2^{-\ell_{j}}\right)
$$

So looking by cases for values of ℓ_{j} we see

$$
\begin{aligned}
& \ell_{j}=1: \operatorname{Pr}\left[C_{j} \text { is sat. }\right]=3 / 4 \\
& \ell_{j}=1: \operatorname{Pr}\left[C_{j} \text { is sat. }\right]=3 / 4 \\
& \ell_{j} \geq 3: \operatorname{Pr}\left[C_{j} \text { is sat. }\right] \geq 1-1 / 2((1-1 / e)+1 / 8) \geq 3 / 4
\end{aligned}
$$

3.1 Integrality Gap

For problems where we construct an integer solution from rounding a fractional solution to a feasible integral solution, and use this ratio as our approximation bound, we can do no better than the ratio between the optimal fraction and optimal integral solution. This is ratio is called the integrality gap and bounds how well we can analyze such algorithms (or primal dual arguments as well.)

We will see that for MAX-SAT there is an integrality gap of $4 / 3$ meaning that our algorithm is tight with the integrality-gap.

Consider a MAX-SAT problem instance with 2 literals, x_{1}, x_{2} and 4 clauses

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \\
& \left(\overline{x_{1}} \vee x_{2}\right) \\
& \left(x_{1} \vee \overline{x_{2}}\right) \\
& \left(\overline{x_{1}} \vee \overline{x_{2}}\right)
\end{aligned}
$$

The integral optimal solution is 3 (indeed every assignment satisfies 3 of the 4 clauses.) However setting each variable to $1 / 2$ gives a fractional optimal solution of 4 to the LP. Therefore the integrality gap is $4 / 3$.

4 Summary

In this lecture we saw how Chernoff bounds can be used to give approximation factors for randomized rounding algorithms, and saw another application of randomized rounding for the MAX-SAT problem. Finally we saw how integrality gaps can be used to give bounds on how well LP based approaches can perform.

