
COMPSCI 632: Approximation Algorithms October 2, 2017

Lecture 10
Lecturer: Debmalya Panigrahi Scribe: Aaron Lowe

1 Overview

Last class we saw the congestion minimization problem. Given a graph G = (V,E) and set of n pairs of
vertices (si, ti) we want to choose paths connecting the pairs, so that the number of times any edge appears
along a path is minimized.

We had the following LP

min λ such that

∑
p∈Pi

Xp ≥ 1 and

∑
i

∑
p∈Pi,e∈p

xp ≤ λ for each edge e

xp ≥ 0

We saw a randomized rounding algorithm in which for each set of paths Pi we choose one path, each
with probability proportional to xp. We finish analyzing the algorithm in this lecture, and show a randomized
rounding algorithm for approximating MAX-SAT as well.

2 Congestion Minimization Continued

2.1 Chernoff Bounds

In this subsection, we will see two chernoff bounds (without proof) which we will use to analyze our ran-
domized algorithm for congestion minimization.

Theorem 1. If X1, . . . ,Xn are independant random boolean variables (each takes on value 0 or 1), with

µ = ∑
i
E [Xi]

then,

Pr

[
∑

i
Xi ≥ (1+ ε)µ

]
≤
(

eε

(1+ ε)(1+ε)

)µ

(1)

Pr

[
∑

i
Xi ≥ (1+ ε)µ

]
≤ e−ε2µ/c if 0 < ε < 1, for some constant c (2)
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2.2 Application to Minimum Congestion

Let

Xe
i

{
1 if (si, ti) path chosen contains e
0 otherwise

Then
E [Xe

i ] = ∑
p∈Pi | e∈p

Xp.

Since λ ≥ µ

Pr

[
∑

i
Xe

i ≥ (1+ ε)λ

]
≤
(

eε

(1+ ε)(1+ε)

)λ

≤

(
1

(1+ε

e )1+ε

)λ

Since there are O(n2) possible edges, we want this bound to be 1/nc for c ≥ 3 so we can use a union
bound over all edges. If we don’t know anything about λ we will choose (1+ ε) = O( logn

log logn), giving us an

O( logn
log logn)-approximation.
However suppose λ ≥ logn, then to get the desired bound we only need (1+ ε) to be some constant,

giving a constant approximation.

3 MAX-SAT

For the max-sat problem, we are given a collection of m clauses
{

C j
}

containing n literals. Each clause is
a disjunction of literals: for example we might have C1 = (X1∨X2∨X3). The goal is to give an assignment
(true or false) to each literal which maximizes the number of clauses which are satisfied, that is evaluate to
true.

A naive randomized algorithm would be to assign each literal Xi true with probability 1/2. If clause C j

has ` j literals,

Pr [C j is satisfied] = 1−1/2` j .

In expectation at least m/2 clauses will be satisfied, giving a 2-approximation. We observe that as
clauses become longer, this bound becomes better.

Remark 1. In fact for 3-SAT it can be shown that one cannot do better than the 7/8-approximation given
by this algorithm, unless P = NP.

However if every clause contained only 1 literal, we could get the optimal solution by assigning each
literal to true if it appears positively in more clauses, otherwise false if it appears as a negation in more
clauses. This suggests that we need to utilize the bound on opt to get a better bound on our approximation.
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We can write a LP for this problem, letting z j be a variable denoting if C j is satisfied, yi denote if literal
Xi is true, Pj be the set of positive literals in C j and N j the negative.

max∑zi

∑
i∈Pj

yi + ∑
i∈N j

(1− yi)≥ z j for each j

0≤ yi ≤ 1

0≤ z j ≤ 1

Given the fractional optimal solution to the LP we can round this by setting xi to true with probability
y∗i . Then we have

Pr [C j is sat.]≥ 1−∏
i∈Pj

(1− y∗i ) ∏
i∈N j

y∗i

The arithmetic-mean geometric-mean inequality says that

∑
n
i=1 ai

n
≥

(
n

∏
i=1

ai

)(1/n)

.

Using this we have

Pr [C j is sat.]≥ 1−

[
1
` j

(
∑
i∈Pj

(1− y∗i )+ ∑
i∈N j

y∗i

)]1/` j

= 1+

[
1
` j

(
∑
i∈Pj

y∗i + ∑
i∈N j

(1− y∗i )

)
− |Pi|

` j
−
|N j|
` j

]` j

≥ 1−

[
1− 1

` j

(
∑
i∈Pj

y∗i + ∑
i∈N j

(1− y∗i )

)]` j

≥ 1−
(

1−
z j

` j

)` j

Letting f (z∗j) = 1−
(

1− z j
` j

)` j
we can see that f is a concave function, with f (0) = 0 f (1) = (1−1/` j)

` j

so we have that

f (z∗j ≥
(

1− (1− 1
` j
)` j

)
z∗j ≥ (1−1/e)z∗j .

We note that the LP-algorithm does better when the clauses are short. So we will combine our two
algorithms: simply run both and take the solution which has more clauses maximized.

To analyze this hybrid algorithm, we see that choosing the better of the two is at least as good as picking
each algorithm with probability 1/2.

Then we have

Pr [C j is sat.]≥ 1− 1
2

((
1− 1

` j

)` j

+2−` j

)
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So looking by cases for values of ` j we see

` j = 1 : Pr [C j is sat.] = 3/4

` j = 1 : Pr [C j is sat.] = 3/4

` j ≥ 3 : Pr [C j is sat.]≥ 1−1/2((1−1/e)+1/8)≥ 3/4

3.1 Integrality Gap

For problems where we construct an integer solution from rounding a fractional solution to a feasible integral
solution, and use this ratio as our approximation bound, we can do no better than the ratio between the
optimal fraction and optimal integral solution. This is ratio is called the integrality gap and bounds how
well we can analyze such algorithms (or primal dual arguments as well.)

We will see that for MAX-SAT there is an integrality gap of 4/3 meaning that our algorithm is tight with
the integrality-gap.

Consider a MAX-SAT problem instance with 2 literals, x1,x2 and 4 clauses

(x1∨ x2)

(x1∨ x2)

(x1∨ x2)

(x1∨ x2)

The integral optimal solution is 3 (indeed every assignment satisfies 3 of the 4 clauses.) However setting
each variable to 1/2 gives a fractional optimal solution of 4 to the LP. Therefore the integrality gap is 4/3.

4 Summary

In this lecture we saw how Chernoff bounds can be used to give approximation factors for randomized
rounding algorithms, and saw another application of randomized rounding for the MAX-SAT problem.
Finally we saw how integrality gaps can be used to give bounds on how well LP based approaches can
perform.
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