
COMPSCI 632: Approximation Algorithms November 6, 2017

Lecture #19
Lecturer: Debmalya Panigrahi Scribe: Xingyu Chen

1 Overview

Today, we focused on metric embeddings technique more closely. Specifically, we focused on tree metric
embedding, which aims to embed an arbitrary graph metric into a tree metric without distorting the original
distance by a large factor.

2 Definition

2.1 Tree Embedding Overview

We start by considering the goal of embedding. Ideally, given a graph G = (V,E), we would like have an
associated tree T such that,

Theorem 1. Given a graph G = (V,E), we have a tree T ,

1. ∀x,y ∈ v, dT (x,y)≥ dG(x,y)

2. ∀x,y ∈ v, dT (x,y)≤ α ·dG(x,y)

In other words, we want the distance between vertices in tree T strictly dominates the original distance in G,
and at the same time doesn’t get stretched by over α factor. However, it is not feasible generally to satisfy
both requirements.

The n-length cycle creates such a problematic situation, which distorts the distance by Ω(n) factor.

So, instead of looking for a single tree, we look for a distribution of trees such that tree drawn from the
distribution will satisfy the second requirement in the expected sense. In other words, we are looking for a
randomized embedding such that.

Theorem 2. Given a graph G = (V,E), we have a tree T and a distribution D,

1. dT (x,y)≥ dG(x,y) ∀x,y ∈ v, ∀T ∈ D

2. ET∼D[dT (x,y)]≤ O(logn) ·dG(x,y) ∀x,y ∈ v

2.2 Sketch of our approach

Let’s first sketch how we should do this. Given a graph G. Imagine a tree T whose length of the first layer
edges is 2i, whose length of the second layer edges is 2i−1. Each next layer’s edge length will shrink by 2 as
in Figure 1. Now, consider vertices x and y in the original graph, which is d(x,y) away from each other.

#19-1

Figure 1: Sketch of Tree T

If I want to preserve the distance exactly in this tree T , I should place x and y such that their least common
ancestor is about at i = logn layer. The reason is because the distance of x and y on this tree is dominated
by the direct edges out of their LCA. So 2i = d(x,y) roughly means i≈ logn.

Now let’s further consider we are the common ancestor z of x and y, length of each edge branching from z
is D. The probability of separating x and y should be less than d(x,y)

D . Or else the expected distance of x and
y on T will blow up and exceeds the original d(x,y).

So in other words, we want the probability of separating x and y at a layer whose edge length is δ to be
less than d(x,y)/δ , while largest distance in each sub tree is no more than δ . These requirements lead to
our tentative subroutine.

Tentative Subroutine:
Given any δ , partition the points in the metric space s.t.

• Diameter of each part of the partition ≤ δ

• Pr[x,y in different parts] ≤ d(x,y)/δ

Figure 2: The line we considered

2.3 Test of The Tentative Subroutine

Let’s test this subroutine with a line consisting of n points. Each point is distance one from both of its
adjacent points, as shown in Figure 2. I want to do a tree metric embedding on this graph to preserve the

#19-2

distance. Consider the simplest situation where I just remove each segment with some probability Pδ , we
claim,

Theorem 3. If we remove any segment in Figure 2 with Pδ = 4logn
δ

, we have a high probability of separating
these vertices into different partitions and satisfy the first requirement of the tentative subroutine, diameter
of each part of the partition ≤ δ .

Proof. I cut these line into 2n
δ

segments. Each segment is of length δ

2 . In each segment, I have

(1−Pδ)
δ/2 = [(1−Pδ)

1/Pδ]2logn ≤ 1
e

2logn
≈ 1

n2

probability of not removing an edge in each segment. There are 2n
δ

segments. We union bound on these
segments. The probability of removing an edge in every segment is larger than 1−n · 1

n2 = 1− 1
n .

If we have a high probability of removing one edge from each δ/2 segments, the diameter of each par-
tition will not exceed δ . This shows that the approach does guarantee a high probability of satisfying the
first requirement.

Now, let’s look at the second requirement, Pr[x,y in different parts] ≤ d(x,y)/δ . If I remove every segment
with probability 4 logn/δ , the probability of one pair of vertices got disconnected is roughly logn 4d(x,y)

δ
.

This suggests that our tentative subroutine may not be realistic. Instead, our subroutine should be:

Subroutine:
Given any δ , partition the points in the metric space such that

• Diameter of each part of the partition ≤ δ

• Pr[x,y in different parts] ≤ logn 4d(x,y)
δ

3 Algorithm for Tree Embedding

Assume we do have such a subroutine. Then we can construct an algorithm to find the tree embedding using
the following algorithm.

Algorithm

• Set δ = diam
2

• Create a partition P1, P2, ... Pk

• Repeat: δ = δ/2. Recurse on each Pi with δ

• Stop when each partition is a singleton.

#19-3

Figure 3: Graphic View of the Algorithm

3.1 Analysis of the algorithm

First, we note that the depth of the recursion is O(log∆), where

∆ =
maxx,y∈v dG(x,y)
minx,y∈v dG(x,y)

The tree T is formed by setting each layer’s edge length to be the δ we used to partition this layer. Now we
prove that this tree T gives us the desired properties, which

1. dT (x,y)≥ dG(x,y) ∀x,y ∈ v, ∀T ∈ D

2. ET∼D[dT (x,y)]≤ O(logn) ·dG(x,y) ∀x,y ∈ v

Lemma 4. This algorithm ensures dT (x,y)≥ dG(x,y) ∀x,y ∈ v, ∀T ∈ D.

Proof. According to the first property of our subroutine, each partition’s diameter will be upper bounded by
δ . This means when δ ≤ dG(x,y)

2 , x and y must have already been separated. Or else, there exists a partition
whose diameter is larger than δ .
Then since x and y have already been separated from each other when δ = dG(x,y)

2 , x and y will at least be
2δ > 2 dG(x,y)

2 = dG(x,y) apart.

Lemma 5. This algorithm ensures ET∼D[dT (x,y)]≤ O(logn) ·dG(x,y) ∀x,y ∈ v

Proof. Let’s assume x and y are split at some point z, whose branch edges have length l (i.e. δ = l in this
step). We have l ≥ dG(x,y)

2 . Now we can sum over all possible points that x and y are split to get the expected
value of dT (x,y)

E[dT (x,y)]≤∑
l

4l ·Pr[x and y are split at δ = l]

≤∑
l

4l · d(x,y)
l/4

logn

= O(logn · log∆ ·d(x,y))

This is still one step from what we tried to prove. But let’s leave this for now and go back latter after we
have better understanding of the algorithm.

#19-4

4 Subroutine

Figure 4: CKR Technique

4.1 CKR Technique

We are going to use this CKR technique devised by [GC01] as our subroutine. This technique can be
described as below (See Figure 4): I have all n points in the metric space. Take a point and draw a ball with
radius δ

2 and put all vertices inside the ball into one partition. Then pick another point, create a ball and
repeat. However, this process is a deterministic process. We need to introduce some randomness here.

1. The first randomness we introduced is that we use a random permutation σ to decide order of
points(balls) we draw.

2. The second randomness we introduced is we choose R uniformly from [δ/4,δ/2].

If we use this process as subroutine, since d(x,y) ≤ 2 · δ/2 = δ for every two points inside each ball, the
first requirement is immediately satisfied.

We focus on the second requirement in the remaining part of this section. Fix some pair of points x and
y. Order all other vertices in increasing distance from {x,y} and call them 1,2,3... etc. Here comes our key
theorem.

Theorem 6. If vertex i separates x from y, then i must be the first vertex in σ among all the vertices 1,2...i.

Proof. Consider j < i. Since j appears before i, j must be closer to {x,y} than i. If i separates x from y, then
without loss of generality, we can assume

d(i,x)≤ R≤ d(i,y)

However, either d(j,x)≤ d(i,x) or d(j,y)≤ d(i,x) must hold. Or else, we won’t put j before i in our distance
increasing order.
Assume d(j,x)≤ d(i,x)≤ R. Consider the ball created by j.

1. If y is also inside the ball created by j, then we can’t separate them in i’s ball since it has already been
put together by j. This case is not possible.

#19-5

2. If y is outside the ball created by j, then we have already separated them in j’s ball. i then can’t
separate x and y. This case is as well not possible.

This means there’s no such j before i. i must be the first vertex in σ among all the vertices 1,2,...i.

With this theorem in our hand, we can calculate the probability of i separates x and y given i is the first
vertices among 1,2...i.

Pr[i separates x,y i <σ j ∀ j = 1,2, ...i−1] = Pr[d(i,x)≤ R≤ d(i,y)]

≤ |d(i,x)−d(i,y)|
δ/4

≤ d(x,y)
δ/4

The first equality is because only when R lies between two vertices, our ball separates x and y. The second
inequality comes from the triangular inequality. Following this, the probability of x and y are separated
considering all x and y is

Pr[x,y are separated] = ∑
i

Pr[i separates x,y] · (1/i)

≤ O(logn) · d(x,y)
δ/4

This inequality shows that the second requirement of the subroutine is also satisfied by CKR technique.

5 Further Analysis of the algorithm

Here, we can still one step from what we promised since in our algorithm analysis section. Our E[dT (x,y)]
is a log∆ factor larger than what we promised. But this is due to our analysis. If we analyzed our algorithm
from a more detailed perspective, we actually can get exactly what we want.

E[dT (x,y)]≤∑
ρ

ρ ·Pr[x, y are split at ρ]

= ∑
ρ

ρ · dT (x,y)
ρ/4

·∑
i

1/i

= 4dT (x,y) ·∑
ρ

(∑
i

1/i)

= 4dT (x,y)∑
ρ

∑
i s.t. ρ/4<d(i,{x,y})<ρ/2

1/i

≤ 4dT (x,y) ·2 ·∑
i

1/i

= 8logn ·dT (x,y) = O(logn ·dT (x,y))

The reason why we only need to consider i s.t. ρ/4 < d(i,{x,y})< ρ/2 is the key point of this new analysis.

1. We don’t need to consider d(i,{x,y})> ρ/2 is because if d(i,{x,y})> ρ/2, we can never separate x
and y even if you choose the largest radius.

#19-6

2. The reason why we don’t need to consider d(i,{x,y})< ρ/4 is left as exercise.

Now consider the distance between x and y. If distance between x and y is less than ρ/4, they will either
have already been separated or both get covered. So i will take care of them. If distance between x and y is
large than ρ/4, ρ must be larger than d(x,y)/2. Then this tells us d(x,y) is no more than 2ρ . So x and y
can’t be too far from each other. Then the number of ρ we need to consider can be bounded by a constant
number. In fact, i only appears for at most 2 different ρs. Then our result follows.

References

[GC01] Y. Rabani G. Calinescu, H. Karloff. Approximation algorithms for the 0-extension problem. Pro-
ceedings of the 12th Annual ACMSIAM Symposium on Discrete Algorithms, pages 8–16, 2001.

#19-7

