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1 Overview

Today, we continue to discuss about metric embeddings technique. Specifically, we apply metric embed-
dings technique to solve the sparsest cut problem.

2 Embedding to lp norm

lp norm of a vector xxx is defined by

‖xxx‖p = (
n

∑
i=1

xxxp
i )

1/p.

In this section, we discuss embedding from any metric space to Rn with lp norm.

2.1 l∞ norm

Let’s first look at l∞ norm, where

‖xxx‖∞ = lim
p→∞

(
n

∑
i=1

xxxp
i )

1/p = max
i

xxxi.

We say an embedding is isometric if the distortion of the embedding is 1.

Theorem 1. l∞ norm is universal, i.e., given any metric space, there exists an isometric embedding to Rn (n
could be arbitrary) with l∞ norm.

Proof. Assume there are n points in the original metric space M , labelled from 1 to k. Let d(i, j) be
the distance between the i-th point and j-th point in the metric space M . Define the embedding function
f : [n]→ Rn to be

[ f (i)]k = d(i,k)

Then, with l∞ norm, we have

‖ f (i)− f ( j)‖∞ = max
k
| fk(i)− fk( j)|= max

k
|d(i,k)−d( j,k)| ≤ d(i, j)

(Triangular inequality is applied in the last inequality.) Moreover, when we choose the index k to be either i
or j, (say i) we have

| fi(i)− fi( j)|= |d(i, i)−d(i, j)|= d(i, j)

since d(i, i) = 0. Therefore, we can conclude that

‖ f (i)− f ( j)‖∞ = d(i, j)

Exercise 1. Show that Euclidean (l2) norm is not universal with the following star graph: V = {1,2,3}∪
{m} with distance d(i,m) = 1 for all i ∈ {1,2,3} and d(i, j) = 2 for all i 6= j and i, j ∈ {1,2,3}.
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2.2 l1 norm

For l1 norm, we have the following theorem, which we will use without proving for the sparsest cut problem.

Theorem 2 ([Bou85]). Any metric space on n points can be deterministicly embedded into an l1 norm space
with O(log2 n) dimension and distortion 4logn.

3 Sparsest cut

Let ∂S be the collection of edges in the cut (S,V \S):

∂S = {(i, j) ∈ E | i ∈ S, j ∈V \S}

and denote the capacity of an edge (i, j) ∈ E be capi j and the capacity of a cut by

cap(∂S) = ∑
(i, j)∈∂S

capi j

Consider a graph G = (V,E). The sparsity of a cut (S,V \S) equals

ψ(S) =
cap(∂S)

min(|S|, |V \S|)

In the sparsest cut problem, the objective is to find a cut with minimum sparsity:

φ(G) = min
S⊂V

ψ(S)

3.1 Relate to Flux

The flux of a cut G is defined by

flux(G) = min
S⊂V

cap(∂S)
|S| · |V \S|

Notice that for each choice of S⊂V ,

φ

flux
=

|S| · |V \S|
n ·min(|S|, |V \S|)

=
1
n
·max(|S|, |V \S|) ∈ [1/2,1]

Therefore, if we can get an α approximation for flux, we can obtain an 2α approximation of φ .

3.2 Demand

Let’s rewrite the flux function,

flux(G) = min
S⊂V

∑(i, j)∈∂S capi j

∑(i, j)∈S×(V\S) 1

We can view the constant 1 in the above formula as demand, which indicates that for each pair (i, j) ∈
S×V \S, we need to push an one-unit flow from i to j. The algorithm we are going to present can work if
we replace the constant 1 by a demand function: dem : V ×V → R. The objective function becomes,

f (G) = min
S⊂V

∑(i, j)∈∂S capi j

∑(i, j)∈S×(V\S) demi j
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3.3 Cut Metric

Elementary Cut Metric. An elementary cut metric is a metric defined by a cut (S,V \ S) such that the
distance di j between i and j is 1 if and only if i and j are separated by the cut; otherwise, di j = 0:

di j = 1 iff |{i, j}∩S|= 1

With elementary cut metric, we can change the search space from finding a cut to finding an elementary
cut metric and rewrite the objective function as follows:

f (G) = min
d

∑(i, j)∈∂S capi j ·di j

∑(i, j)∈S×(V\S) demi j ·di j

(general) Cut Metric. A general cut metric is a linear combination of some elementary cut metrics

di j = ∑
S:|{i, j}∩S|=1

yS

3.4 LP formulation

First notice that the value of the objective is the same up to scaling. Therefore, without loss of generality,
we can constrain that

∑
(i, j)∈S×(V\S)

demi j ·di j = 1

and turn the objective to be
min ∑

(i, j)∈∂S
capi j ·di j.

The remaining constraints make sure that d comes from a metric space. The entire program is as follows:

min ∑|{i, j}∩S|=1 capi j ·di j

s.t ∑|{i, j}∩S|=1 demi j ·di j = 1
dii = 0 ∀i
di j = d ji ∀i, j
di j +d jk ≤ dik ∀i, j,k
d is an elementary cut metric

We change ∂S to S× (V \S) in the above LP by letting capi j = 0 if (i, j) ∈ S× (V \S) but (i, j) 6∈ E and also
rewrite (i, j) ∈ S× (V \S) by |{i, j}∩S|= 1 for simlicity. Finally, in order to obtain an LP, we drop the last
constraint so that we compute the best metric instead of the best elementary cut metric.

3.5 Analysis

Given the solution metric d∗ from LP, we first apply Theorem 2 to embed it to metric dl1 in Rlog2 n with l1
norm. In the next step, we turn the dl1 to a (general) cut metric dgc, which we will show that this embedding
is isometric. Finally, we extract an elementary cut metric dec from dgc to obtain our solution.

Claim 1. Embedding dl1 to dgc is isometric.

#20-3



Proof. Let’s first consider the case when dl1 is in one dimension. Therefore, all the points are located on a
line. Without loss of generality, assume these points to be x1 < x2 < xn. For each 1≤ i < n, we define a cut
between xi and xi+1 such that Si = {1, · · · , i} and let ySi = xi+1− xi. Then, for any pair (i, j), we have

dl1
i j = ∑

i≤k< j
ySi = ∑

i≤k< j
xk+1− xk = x j− xi.

Therefore, embedding dl1 to dgc is isometric when dl1 is in one dimension. Notice that l1 distance between
xxxi and xxx j is

‖xxxi− xxx j‖1 = ∑
k
|(xxxi)k− (xxx j)k|

Thus, we can apply the argument for one dimension case to each dimension separately to show that the
embedding is isometric even when dl1 is in a higher dimension space.

Recall that after applying Theorem 2, dl1 is in O(log2 n) dimension. According to the proof of Claim 1,
the cut metric dgc is a linear combination of O(n log2 n) elementary cut metrics (denote the set of these cut
by EC). Therefore, we can find the elementary cut metric dec with minimum objective value in poly time. It
remains to show that the elementary cut metric we obtain is a good solution.

min
S∈EC

∑|{i, j}∩S|=1 capi j

∑|{i, j}∩S|=1 demi j
= min

S∈EC

yS ·∑|{i, j}∩S|=1 capi j

yS ·∑|{i, j}∩S|=1 demi j
≤

∑S∈EC yS ·∑|{i, j}∩S|=1 capi j

∑S∈EC yS ·∑|{i, j}∩S|=1 demi j

=
∑(i, j) capi j ·∑S∈EC,|{i, j}∩S|=1 yS

∑(i, j) demi j ∑S∈EC,|{i, j}∩S|=1 yS
=

∑(i, j) capi j ·d
l1
i j

∑(i, j) demi j ·dl1
i j

≤
∑(i, j) capi j ·4logn ·d∗i j

∑(i, j) demi j ·d∗i j
≤ 4lognLP≤ 4lognOPT

The first step is just to multiply yS on both the denominator and the nominator, which still keeps the function
value the same. The second step applies the following claim

Claim 2. If ai > 0 and bi > 0 for all i, we have

min
i

ai

bi
≤ ∑i ai

∑i bi
.

The third step is a change of order of summation while the fourth step uses the fact that ∑S∈EC,|{i, j}∩S|=1 yS =

dgc
i j and Claim 1. In the fourth step, we apply Theorem 2 with d∗i j ≤ dl1

i j ≤ 4logn ·d∗i j.

4 Summary

In this lecture, we discuss embedding to lp norm and use the embedding to l1 norm to design an approxima-
tion algorithm for the sparsest cut problem [LLR95].
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