
CompSci 516
Database	Systems

Lecture	10
Query	Evaluation

and	
Join	Algorithms

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Reading	Material

• [RG]		
– Query	evaluation	and	operator	algorithms:	
Chapter	12.2-12.5,	13,	14.1-14.3

– Join	Algorithm:	Chapter	14.4
– Set/Aggregate:	Chapter	14.5,	14.6

2

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan and		Dr.	Gehrke.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Overview	of	Query	Evaluation

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

Overview	of	Query	Evaluation

• How	queries	are	evaluated	in	a	DBMS
– How	DBMS	describes	data	(tables	and	indexes)

• Relational	Algebra	Tree/Plan	=	Logical	Query	Plan

• Now	Algorithms	will	be	attached	to	each	operator	=	
Physical	Query	Plan

• Plan	=		Tree	of	RA	ops,	with	choice	of	algorithm	for	each	op.
– Each	operator	typically	implemented	using	a	“pull”	interface
– when	an	operator	is	“pulled”	for	the	next	output	tuples,	it	

“pulls”	on	its	inputs	and	computes	them

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Overview	of	Query	Evaluation
• Two	main	issues	in	query	optimization:

1. For	a	given	query,	what	plans	are	considered?
– Algorithm	to	search	plan	space	for	cheapest	
(estimated)	plan	

2. How	is	the	cost	of	a	plan	estimated?

• Ideally:	Want	to	find	best	plan
• Practically:	Avoid	worst	plans!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

Some	Common	Techniques
• Algorithms	for	evaluating	relational	operators	use	some	simple	

ideas	extensively:
• Indexing:		

– Can	use	WHERE	conditions	to	retrieve	small	set	of	tuples	(selections,	joins)

• Iteration:		
– Examine	all	tuples	in	an	input	tuple
– Sometimes,	faster	to	scan	all	tuples	even	if	there	is	an	index
– And	sometimes,	we	can	scan	the	data	entries	in	an	index	instead	of	the	

table	itself	– Recall	INDEX-ONLY	plan	-- iterate	over	leaves	in	a	tree

• Partitioning:	
– By	using	sorting	or	hashing,	we	can	partition	the	input	tuples	and	replace	an	

expensive	operation	by	similar	operations	on	smaller	inputs

Watch	for	these	techniques	as	we	discuss	query	evaluation!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

System	Catalog
• Stores	information	about	the	relations	and	indexes	involved
• Also	called	Data	Dictionary	(basically	a	collection	of	tables	itself)

• Catalogs typically	contain	at	least:
– Size	of	the	buffer	pool	and	page	size
– #	tuples	(NTuples)	and	#	pages	(NPages)	for	each	relation
– #	distinct	key	values	(NKeys)	and	NPages for	each	index
– Index	height	for	each	tree	index
– Lowest/highest	key	values	(Low/High)	for	each	index

• More	detailed	information	(e.g.,	histograms	of	the	values	in	some	field)	are	
sometimes	stored

• Catalogs	updated	periodically.
– Updating	whenever	data	changes	is	too	expensive;	lots	of	approximation	anyway,	so	

slight	inconsistency	ok

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7

End	of	
lecture	9

Announcements

• Midterm	on	10/11	(next	week	Thursday)
– everything	until	10/4	included

• No	class	on	10/9
– fall	break

• Change	in	Sudeepa’s office	hour	time	10/4	
(Thursday)
– at	1	pm
– or	send	me	an	email	for	an	appointment

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

Access	Paths

• A	way	of	retrieving	tuples	from	a	table
• Consists	of
– a	file	scan,	 or
– an	index	+	a	matching	condition

• The	access	method	contributes	significantly	to	the	
cost	of	the	operator
– Any	relational	operator	accepts	one	or	more	table	as	
input

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

Index	“matching”	a	search	condition
Recall
• A tree index matches (a conjunction of) terms that involve only

attributes in a prefix of the search key.
• E.g., Tree index on <a, b, c> matches the selection
• a=5 AND b=3,
• and a=5 AND b>6,
• but not b=3

• A hash index matches (a conjunction of) terms that has a term attribute
= value for every attribute in the search key of the index.
• E.g., Hash index on <a, b, c> matches
• a=5 AND b=3 AND c=5;
• but it does not match b=3,
• or a=5 AND b=3,
• or a>5 AND b=3 AND c=5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

Access	Paths:	Selectivity

• Selectivity:
– the	number	of	pages	retrieved	for	an	access	path
– includes	data	pages	+	index	pages

• Options	for	access	paths:
– scan	file
– use	matching	index
– scan	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11

Most Selective	Access	Paths

• An	index	or	file	scan	that	we	estimate	will	
require	the	fewest	page	I/Os
– Terms	that	match	this	index	reduce	the	number	of	
tuples	retrieved

– other	terms	are	used	to	discard	some	retrieved	
tuples,	but	do	not	affect	number	of	tuples/pages	
fetched.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

Selectivity	:	Example	1

• Hash	index	on	sailors	<rname,	bid,	sid>
• Selection	condition	(rname =	‘Joe’	⋀ bid	=	5	⋀
sid =	3)

• #of	sailors	pages	=	N
• #distinct	keys	=	K
• Fraction	of	pages	satisfying	this	condition	=	
(approximately)	N/K

• Assumes	uniform	distribution

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

Selectivity	:	Example	2

• Hash	index	on	sailors	<bid,	sid>
• Selection	condition	(bid	=	5	⋀ sid =	3)
• Suppose	N1 distinct	values	of	bid,	N2 for	sid
• Reduction	factors	
– for	(bid	=	5)	:	1/ N1

– for	(bid	=	5	⋀ sid =	3):	1/	(N1	⨉ N2)

• Assumes	independence
• Fraction	of	pages	retrieved	or	I/O:
– for	clustered	index	=	1/	(N1	⨉ N2)
– for	unclustered index	=	1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

Selectivity	:	Example	3

• Tree	index	on	sailors	<bid>
• Selection	condition	(bid	>	5)
• Lowest	value	of	bid	=	1,	highest	=	100
• Reduction	factor
– (100	- 5)/(100	- 1)
– assumes	uniform	distribution

• In	general:
– key	>	value	:	(High	– value)	/	(High	– Low)
– key	<	value	:	(value	- Low)	/	(High	– Low)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15

Operator	Algorithms

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16

Relational	Operations
• We	will	consider	how	to	implement:

– Join (⨝)		Allows	us	to	combine	two	relations	(in	detail)

• Also
– Selection (σ)				Selects	a	subset	of	rows	from	relation.
– Projection	 (π)			Deletes	unwanted	columns	from	relation.
– Set-difference (-)		Tuples	in	reln.	1,	but	not	in	reln.	2.
– Union (∪)		Tuples	in	reln.	1	and	in	reln.	2.
– Aggregation (SUM,	MIN,	etc.)	and	GROUP	BY

• Since	each	op	returns	a	relation,	ops	can	be	composed

• After	we	cover	each	operation,	we	will	discuss	how	to	optimize
queries	formed	by	composing	them	(query	optimization)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

Assumption:	ignore	final	write

• i.e.	assume	that	your	final	results	can	be	left	in	
memory
– and	does	not	be	written	back	to	disk
– unless	mentioned	otherwise

• Why	such	an	assumption?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18

Algorithms	for	Joins

19Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Equality	Joins	With	One	Join	Column

• In	algebra:	R⨝ S
– Common!		Must	be	carefully	optimized
– R		X	S	is	large;	so,	R		X	S	followed	by	a	selection	is	inefficient

• Cost	metric:		#	of	I/Os
– Remember,	we	will	ignore	output	costs	(always)

=	the	cost	to	write	the	final	result	tuples	back	to	the	disk

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

20Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Common	Join	Algorithms

1. Nested	Loops	Joins	(NLJ)
– Simple	nested	loop	join
– Block	nested	loop	join
– index	nested	loop	join

2. Sort	Merge	Join

3. Hash	Join

21

Very	similar	to	external	sort		

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Algorithms	for	Joins

22

1.	NESTED	LOOP	JOINS

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Simple	Nested	Loops	Join

• For	each	tuple	in	the	outer	relation	R,	we	scan	the	entire	inner	relation	S.	
– Cost:		M	+		(pR *	M)	*	N		=		1000	+	100*1000*500		I/Os.

• Page-oriented	Nested	Loops	join:		
– For	each	page of	R,	get	each	page of	S
– and	write	out	matching	pairs	of	tuples		<r,	s>
– where	r	is	in	R-page	and	S	is	in	S-page.
– Cost:		M	+	M*N	=	1000	+	1000*500

• If	smaller	relation	(S)	is	outer
– Cost:		N +	M*N =	500	+	500*1000		

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

R	⨝ S

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

23Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

How	many	buffer	pages	
do	you	need?

Block	Nested	Loops	Join
• Simple-Nested	does	not	properly	utilize	buffer	pages	(uses	3	pages)
• Suppose	have	enough	memory	to	hold	the	smaller	relation	R	+	at	least	two	other	

pages
– e.g.	in	the	example	on	previous	slide	(S	is	smaller),	and	we	need	500	+	2	=	502	pages	in	the	buffer

• Then	use	one	page	as	an	input	buffer	for	scanning	the	inner	
– one	page	as	the	output	buffer
– For	each	matching	tuple	r	in	R-block,	s	in	S-page,	add	<r,	s>	to	result

• Total	I/O	=	M+N
• What	if	the	entire	smaller	relation	does	not	fit?

. . .
. . .

R & S
Entire	smaller	relation	R

Input	buffer	for	S Output	buffer

. . .

Join Result

24Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

• If	R	does	not	fit	in	memory,
– Use	one	page	as	an	input	buffer	for	scanning	the	inner	S
– one	page	as	the	output	buffer
– and	use	all	remaining	pages	to	hold	``block’’	of	outer	R.
– For	each	matching	tuple	r	in	R-block,	s	in	S-page,	add	<r,	s>	to	result
– Then	read	next	R-block,	scan	S,	etc.

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

Block	Nested	Loops	Join

25Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Cost	of	Block	Nested	Loops
in	class
• R	is	outer
• B-2	=	100-page	blocks
• How	many	blocks	of	R?
• Cost	to	scan	R?
• Cost	to	scan	S?
• Total	Cost?

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

foreach block of B-2 pages of R do
foreach page of S do {

for all matching in-memory tuples r in R-
block and s in S-page

add <r, s> to result

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

26Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Cost	of	Block	Nested	Loops
• R	is	outer
• B-2	=	100-page	blocks
• How	many	blocks	of	R?	10
• Cost	to	scan	R?	1000
• Cost	to	scan	S?	10	*	500
• Total	Cost?	1000	+	5000	=	6000
• (check	yourself)	

• If	space	for	just	90	pages	of	R,	we	
would	scan	S	12	times,	cost	=	7000

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

foreach block of B-2 pages of R do
foreach page of S do {

for all matching in-memory tuples r in R-
block and s in S-page

add <r, s> to result

• Cost:		Scan	of	outer	+		#outer	blocks	*	scan	of	
inner
– #outer	blocks	=	⌈#pages	of	outer	relation/blocksize⌉

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

for	blocked	
access,	
it	might	be	good
to	equally	divide
buffer	pages
among	R	and	S
(“seek	time”	less)

27Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Index	Nested	Loops	Join

• Suppose	there	is	an	index	on	the	join	column	of	one	relation
– say	S
– can	make	it	the	inner	relation	and	exploit	the	index
– Cost:		M	+	((M*pR)	*	cost	of	finding	matching	S	tuples)	
– For	each	R	tuple,	cost	of	probing	S	index	(get	k*)	is	about	

• 1-2	for	hash	index
• 2-4	for	B+	tree.	

– Cost	of	then	finding	S	tuples	(assuming	Alt.	2	or	3)	depends	on	
clustering
• See	lecture	7-8

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

28Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Cost	of	Index	Nested	Loops

• Hash-index	(Alt.	2)	on	sid of	Sailors	(as	inner),	sid is	a	key
• Cost	to	scan	Reserves?		

– 1000	page	I/Os,	100*1000	tuples.

• Cost	to	find	matching	Sailors	tuples?
– For	each	Reserves	tuple:		
– (suppose	on	avg)	1.2			I/Os to	get	data	entry	in	index
– +	1			I/O	to	get	(the	exactly	one)	matching	Sailors	tuple

• Total	cost:		
• 1000	+	100	*	1000	*	2.2	=	221,000	I/Os

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

29Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Cost	of	Index	Nested	Loops

• Hash-index	(Alt.	2)	on	sid of	Reserves	(as	inner),	sid is	NOT	a	key

• Cost	to	Scan	Sailors:		
– 500	page	I/Os,	80*500	tuples.

• For	each	Sailors	tuple:		
– 1.2	I/Os to	find	index	page	with	data	entries
– +	cost	of	retrieving	matching	Reserves	tuples

• Assuming	uniform	distribution,	2.5	reservations	per	sailor	(100,000	/	40,000).		
• Cost	of	retrieving	them		is	1	or	2.5	I/Os depending	on	whether	the	index	is	
clustered

• Total	cost	=		500	+	80	*	500	*	2.2		=	88,	500	if	clustered
• up	to	~	500	+	80	*	500	*	3.7	=	148,500	if	unclustered (approx)

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

30Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

even	with	unclustered index,
index	NLJ	may	be	cheaper	
than	simple	NLJ

Algorithms	for	Joins

31

2.	SORT-MERGE	JOINS

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join

• Sort	R	and	S	on	the	join	column
• Then	scan	them	to	do	a	``merge’’	(on	join	col.)
• Output	result	tuples.

32Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join:	1/3

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Sailors

R

• Advance	scan	of	R	until	current	R-tuple	>=	current	S	tuple
– then	advance	scan	of	S	until	current	S-tuple	>=	current	R	tuple
– do	this	as	long	as	current	R	tuple	=	current	S	tuple

33Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Reserves

S

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S R

WRITE	TWO	OUTPUT	TUPLES

• At	this	point,	all	R	tuples	with	same	value	in	Ri (current	R	
group)	and	all	S	tuples	with	same	value	in	Sj (current	S	
group)	
– match
– find	all	the	equal	tuples
– output	<r,	s>	for	all	pairs	of	such	tuples

34Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join:	2/3

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

WRITE	THREE	OUTPUT	TUPLES
35Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join:	3/3

• Then	resume	scanning	R	and	S

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

NO	MATCH,	CONTINUE	SCANNING	S

• …	and	proceed	till	end

36Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join:	3/3

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

WRITE	ONE	OUTPUT	TUPLE
37Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Sort-Merge	Join:	3/3
• …	and	proceed	till	end

Example	of	Sort-Merge	Join

• Typical	Cost:		O(M	log	M)	+	O(N	log	N)	+	(M+N)
– ignoring	B	(as	the	base	of	log)
– cost	of	sorting	R	+	sorting	S	+	merging	R,	S
– The	cost	of	scanning	in	merge-sort,	M+N,	could	be	M*N!	

• assume	the	same	single	value	of	join	attribute	in	both	R	and	S
• but	it	is	extremely	unlikely

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

38Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Cost	of	Sort-Merge	Join

• 100	buffer	pages
• Sort	R:	

– (pass	0)	 1000/100	=	10	sorted	runs
– (pass	1)	merge	10	runs
– read	+	write,	2	passes
– 4	*	1000	=	4000	I/O

• Similarly,	Sort	S:	4	*	500	=	2000	I/O
• Second	merge	phase	of	sort-merge	join

– another	1000	+	500	=	1500	I/O
– assume	uniform	~2.5	matches	per	sid,	so	M+N	is	

sufficient
• Total	7500	I/O

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

• Check	yourself:
– Consider	#buffer	

pages	35,	100,	300
– Cost	of	sort-merge	=	

7500	in	all	three
– Cost	of	block	nested	

16500,	6000,	2500

39Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Algorithms	for	Joins

40

3.	HASH	JOINS

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Two	Phases

1. Partition	Phase
– partition	R	and	S	using	the	same	hash	function	h

2. Probing	Phase
– join	tuples	from	the	same	partition	(same	h(..)	

value)	of	R	and	S
– tuples	in	different	partition	of	h	will	never	join
– use	a	“different”	hash	function	h2 for	joining	

these	tuples	
• (why	different	– see	next	slide	first)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41

Hash-Join
• Partition	both	

relations	using	hash	
function	h

• R	tuples	in	partition	i
will	only	match	S	
tuples	in	partition	i

v Read in a partition of R,
hash it using h2 (≠ h).

v Scan matching partition of
S, search for matches.

B	main	memory	buffers DiskDisk

Original	
Relation OUTPUT

2INPUT

1

hash
function
h B-1

Partitions

1

2

B-1

. . .

RS

Disk

Partitions
of	R	&	S

Input	buffer
for	Si

Hash	table	for	partition
Ri	(k	<	B-1	pages)

B	main	memory	buffers

Output	
buffer

Disk

Join	Result

hash
fn
h2

h2

Partitions

1

2

B-1

Cost	of	Hash-Join
• In	partitioning	phase
– read+write both	relns;	2(M+N)
– In	matching	phase,	read	both	relns;	M+N	I/Os
– remember	– we	are	not	counting	final	write

• In	our	running	example,	this	is	a	total	of	4500	I/Os
– 3	*	(1000	+	500)
– Compare	with	the	previous	joins

43Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Visit	in	next	lecture

Sort-Merge	Join	vs.	Hash	Join

• Both	can	have	a	cost	of	3(M+N)	I/Os
– if	sort-merge	gets	enough	buffer	(see	14.4.2)

• Hash	join	holds	smaller	relation	in	buffer-
better	if	limited	buffer

• Hash	Join	shown	to	be	highly	parallelizable
• Sort-Merge	less	sensitive	to	data	skew

– also	result	is	sorted

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 44

Other	operator	algorithms

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 45

Algorithms	
for	Selection

• No	index,	unsorted	data
– Scan	entire	relation
– May	be	expensive	if	not	many	`Joe’s

• No	index,	sorted	data	(on	‘rname’)
– locate	the	first	tuple,	scan	all	matching	tuples
– first	binary	search,	then	scan	depends	on	matches

• B+-tree	index,	Hash	index
– Discussed	earlier
– Cost	of	accessing	data	entries	+	matching	data	records
– Depends	on	clustered/unclustered

• More	complex	condition	like	day<8/9/94	AND	bid=5	AND	sid=3
– Either		use	one	index,	then	filter
– Or	use	two	indexes,	then	take	intersection,	then	apply	third	condition
– etc.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46

SELECT *
FROM Reserves R
WHERE R.rname = ‘Joe’

Algorithms	
for	Projection

• Two	parts
– Remove	fields:	easy
– Remove	duplicates	(if	distinct	is	specified):	expensive

• Sorting-based
– Sort,	then	scan	adjacent	tuples	to	remove	duplicates
– Can	eliminate	unwanted	attributes	in	the	first	pass	of	merge	sort

• Hash-based
– Exactly	like	hash	join
– Partition	only	one	relation	in	the	first	pass
– Remove	duplicates	in	the	second	pass	

• Sort	vs	Hash
– Sorting	handles	skew	better,	returns	results	sorted
– Hash	table	may	not	fit	in	memory	– sorting	is	more	standard

• Index-only	scan	may	work	too
– If	all	required	attributes	are	part	of	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Algorithms	for	Set	Operations

• Intersection,	cross	product	are	special	cases	of	
joins

• Union,	Except
– Sort-based
– Hash-based
– Very	similar	to	joins	and	projection

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48

Algorithms	for	Aggregate	Operations

• SUM,	AVG,	MIN	etc.		
– again	similar	to	previous	approaches

• Without	grouping:
– In	general,	requires	scanning	the	relation.
– Given	index	whose	search	key	includes	all	attributes	in	the	SELECT

or	WHERE clauses,	can	do	index-only	scan

• With	grouping:
– Sort	on	group-by	attributes
– or,	hash	on	group-by	attributes
– can	combine	sort/hash	and	aggregate
– can	do	index-only	scan	here	as	well

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

