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Reading	Material

• [RG]		
– Query	evaluation	and	operator	algorithms:	
Chapter	12.2-12.5,	13,	14.1-14.3

– Join	Algorithm:	Chapter	14.4
– Set/Aggregate:	Chapter	14.5,	14.6
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Overview	of	Query	Evaluation
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Overview	of	Query	Evaluation

• How	queries	are	evaluated	in	a	DBMS
– How	DBMS	describes	data	(tables	and	indexes)

• Relational	Algebra	Tree/Plan	=	Logical	Query	Plan

• Now	Algorithms	will	be	attached	to	each	operator	=	
Physical	Query	Plan

• Plan	=		Tree	of	RA	ops,	with	choice	of	algorithm	for	each	op.
– Each	operator	typically	implemented	using	a	“pull”	interface
– when	an	operator	is	“pulled”	for	the	next	output	tuples,	it	

“pulls”	on	its	inputs	and	computes	them
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Overview	of	Query	Evaluation
• Two	main	issues	in	query	optimization:

1. For	a	given	query,	what	plans	are	considered?
– Algorithm	to	search	plan	space	for	cheapest	
(estimated)	plan	

2. How	is	the	cost	of	a	plan	estimated?

• Ideally:	Want	to	find	best	plan
• Practically:	Avoid	worst	plans!
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Some	Common	Techniques
• Algorithms	for	evaluating	relational	operators	use	some	simple	

ideas	extensively:
• Indexing:		

– Can	use	WHERE	conditions	to	retrieve	small	set	of	tuples	(selections,	joins)

• Iteration:		
– Examine	all	tuples	in	an	input	tuple
– Sometimes,	faster	to	scan	all	tuples	even	if	there	is	an	index
– And	sometimes,	we	can	scan	the	data	entries	in	an	index	instead	of	the	

table	itself	– Recall	INDEX-ONLY	plan	-- iterate	over	leaves	in	a	tree

• Partitioning:	
– By	using	sorting	or	hashing,	we	can	partition	the	input	tuples	and	replace	an	

expensive	operation	by	similar	operations	on	smaller	inputs

Watch	for	these	techniques	as	we	discuss	query	evaluation!
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System	Catalog
• Stores	information	about	the	relations	and	indexes	involved
• Also	called	Data	Dictionary	(basically	a	collection	of	tables	itself)

• Catalogs typically	contain	at	least:
– Size	of	the	buffer	pool	and	page	size
– #	tuples	(NTuples)	and	#	pages	(NPages)	for	each	relation
– #	distinct	key	values	(NKeys)	and	NPages for	each	index
– Index	height	for	each	tree	index
– Lowest/highest	key	values	(Low/High)	for	each	index

• More	detailed	information	(e.g.,	histograms	of	the	values	in	some	field)	are	
sometimes	stored

• Catalogs	updated	periodically.
– Updating	whenever	data	changes	is	too	expensive;	lots	of	approximation	anyway,	so	

slight	inconsistency	ok
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Announcements

• Midterm	on	10/11	(next	week	Thursday)
– everything	until	10/4	included

• No	class	on	10/9
– fall	break

• Change	in	Sudeepa’s office	hour	time	10/4	
(Thursday)
– at	1	pm
– or	send	me	an	email	for	an	appointment
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Access	Paths

• A	way	of	retrieving	tuples	from	a	table
• Consists	of
– a	file	scan,	 or
– an	index	+	a	matching	condition

• The	access	method	contributes	significantly	to	the	
cost	of	the	operator
– Any	relational	operator	accepts	one	or	more	table	as	
input
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Index	“matching”	a	search	condition
Recall
• A tree index matches (a conjunction of) terms that involve only 

attributes in a prefix of the search key.
• E.g., Tree index on <a, b, c>  matches the selection 
• a=5 AND b=3, 
• and a=5 AND b>6, 
• but not b=3

• A hash index matches (a conjunction of) terms that has a term attribute 
= value for every attribute in the search key of the index.
• E.g., Hash index on <a, b, c>  matches 
• a=5 AND b=3 AND c=5; 
• but it does not match b=3, 
• or a=5 AND b=3, 
• or a>5 AND b=3 AND c=5
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Access	Paths:	Selectivity

• Selectivity:
– the	number	of	pages	retrieved	for	an	access	path
– includes	data	pages	+	index	pages

• Options	for	access	paths:
– scan	file
– use	matching	index
– scan	index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11



Most Selective	Access	Paths

• An	index	or	file	scan	that	we	estimate	will	
require	the	fewest	page	I/Os
– Terms	that	match	this	index	reduce	the	number	of	
tuples	retrieved

– other	terms	are	used	to	discard	some	retrieved	
tuples,	but	do	not	affect	number	of	tuples/pages	
fetched.
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Selectivity	:	Example	1

• Hash	index	on	sailors	<rname,	bid,	sid>
• Selection	condition	(rname =	‘Joe’	⋀ bid	=	5	⋀
sid =	3)

• #of	sailors	pages	=	N
• #distinct	keys	=	K
• Fraction	of	pages	satisfying	this	condition	=	
(approximately)	N/K

• Assumes	uniform	distribution
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Selectivity	:	Example	2

• Hash	index	on	sailors	<bid,	sid>
• Selection	condition	(bid	=	5	⋀ sid =	3)
• Suppose	N1 distinct	values	of	bid,	N2 for	sid
• Reduction	factors	
– for	(bid	=	5)	:	1/ N1

– for	(bid	=	5	⋀ sid =	3):	1/	(N1	⨉ N2)

• Assumes	independence
• Fraction	of	pages	retrieved	or	I/O:
– for	clustered	index	=	1/	(N1	⨉ N2)
– for	unclustered index	=	1
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Selectivity	:	Example	3

• Tree	index	on	sailors	<bid>
• Selection	condition	(bid	>	5)
• Lowest	value	of	bid	=	1,	highest	=	100
• Reduction	factor
– (100	- 5)/(100	- 1)
– assumes	uniform	distribution

• In	general:
– key	>	value	:	(High	– value)	/	(High	– Low)
– key	<	value	:	(value	- Low)	/	(High	– Low)
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Operator	Algorithms
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Relational	Operations
• We	will	consider	how	to	implement:

– Join (⨝)		Allows	us	to	combine	two	relations	(in	detail)

• Also
– Selection (σ)				Selects	a	subset	of	rows	from	relation.
– Projection	 (π)			Deletes	unwanted	columns	from	relation.
– Set-difference (-)		Tuples	in	reln.	1,	but	not	in	reln.	2.
– Union (∪)		Tuples	in	reln.	1	and	in	reln.	2.
– Aggregation (SUM,	MIN,	etc.)	and	GROUP	BY

• Since	each	op	returns	a	relation,	ops	can	be	composed

• After	we	cover	each	operation,	we	will	discuss	how	to	optimize
queries	formed	by	composing	them	(query	optimization)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17



Assumption:	ignore	final	write

• i.e.	assume	that	your	final	results	can	be	left	in	
memory
– and	does	not	be	written	back	to	disk
– unless	mentioned	otherwise

• Why	such	an	assumption?
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Algorithms	for	Joins
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Equality	Joins	With	One	Join	Column

• In	algebra:	R⨝ S
– Common!		Must	be	carefully	optimized
– R		X	S	is	large;	so,	R		X	S	followed	by	a	selection	is	inefficient

• Cost	metric:		#	of	I/Os
– Remember,	we	will	ignore	output	costs	(always)

=	the	cost	to	write	the	final	result	tuples	back	to	the	disk

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
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Common	Join	Algorithms

1. Nested	Loops	Joins	(NLJ)
– Simple	nested	loop	join
– Block	nested	loop	join
– index	nested	loop	join

2. Sort	Merge	Join

3. Hash	Join

21

Very	similar	to	external	sort		
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Algorithms	for	Joins
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1.	NESTED	LOOP	JOINS
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Simple	Nested	Loops	Join

• For	each	tuple	in	the	outer	relation	R,	we	scan	the	entire	inner	relation	S.	
– Cost:		M	+		(pR *	M)	*	N		=		1000	+	100*1000*500		I/Os.

• Page-oriented	Nested	Loops	join:		
– For	each	page of	R,	get	each	page of	S
– and	write	out	matching	pairs	of	tuples		<r,	s>
– where	r	is	in	R-page	and	S	is	in	S-page.
– Cost:		M	+	M*N	=	1000	+	1000*500

• If	smaller	relation	(S)	is	outer
– Cost:		N +	M*N =	500	+	500*1000		

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

R	⨝ S

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page
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Block	Nested	Loops	Join
• Simple-Nested	does	not	properly	utilize	buffer	pages	(uses	3	pages)
• Suppose	have	enough	memory	to	hold	the	smaller	relation	R	+	at	least	two	other	

pages
– e.g.	in	the	example	on	previous	slide	(S	is	smaller),	and	we	need	500	+	2	=	502	pages	in	the	buffer

• Then	use	one	page	as	an	input	buffer	for	scanning	the	inner	
– one	page	as	the	output	buffer
– For	each	matching	tuple	r	in	R-block,	s	in	S-page,	add	<r,	s>	to	result

• Total	I/O	=	M+N
• What	if	the	entire	smaller	relation	does	not	fit?

. . .
. . .

R & S
Entire	smaller	relation	R

Input	buffer	for	S Output	buffer

. . .

Join Result

24Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



• If	R	does	not	fit	in	memory,
– Use	one	page	as	an	input	buffer	for	scanning	the	inner	S
– one	page	as	the	output	buffer
– and	use	all	remaining	pages	to	hold	``block’’	of	outer	R.
– For	each	matching	tuple	r	in	R-block,	s	in	S-page,	add	<r,	s>	to	result
– Then	read	next	R-block,	scan	S,	etc.

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

Block	Nested	Loops	Join
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Cost	of	Block	Nested	Loops
in	class
• R	is	outer
• B-2	=	100-page	blocks
• How	many	blocks	of	R?
• Cost	to	scan	R?
• Cost	to	scan	S?
• Total	Cost?

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

foreach block of B-2 pages of R do
foreach page of S do {

for all matching in-memory tuples r in R-
block and s in S-page

add <r, s> to result

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page
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Cost	of	Block	Nested	Loops
• R	is	outer
• B-2	=	100-page	blocks
• How	many	blocks	of	R?	10
• Cost	to	scan	R?	1000
• Cost	to	scan	S?	10	*	500
• Total	Cost?	1000	+	5000	=	6000
• (check	yourself)	

• If	space	for	just	90	pages	of	R,	we	
would	scan	S	12	times,	cost	=	7000

. . .
. . .

R & S
Block	of	R

(k	<=	B-2	pages)

Input	buffer	for	S Output	buffer

. . .

Join Result

foreach block of B-2 pages of R do
foreach page of S do {

for all matching in-memory tuples r in R-
block and s in S-page

add <r, s> to result

• Cost:		Scan	of	outer	+		#outer	blocks	*	scan	of	
inner
– #outer	blocks	=	⌈#pages	of	outer	relation/blocksize⌉

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

for	blocked	
access,	
it	might	be	good
to	equally	divide
buffer	pages
among	R	and	S
(“seek	time”	less)
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Index	Nested	Loops	Join

• Suppose	there	is	an	index	on	the	join	column	of	one	relation
– say	S
– can	make	it	the	inner	relation	and	exploit	the	index
– Cost:		M	+	(	(M*pR)	*	cost	of	finding	matching	S	tuples)	
– For	each	R	tuple,	cost	of	probing	S	index	(get	k*)	is	about	

• 1-2	for	hash	index
• 2-4	for	B+	tree.	

– Cost	of	then	finding	S	tuples	(assuming	Alt.	2	or	3)	depends	on	
clustering
• See	lecture	7-8

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page
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Cost	of	Index	Nested	Loops

• Hash-index	(Alt.	2)	on	sid of	Sailors	(as	inner),	sid is	a	key
• Cost	to	scan	Reserves?		

– 1000	page	I/Os,	100*1000	tuples.

• Cost	to	find	matching	Sailors	tuples?
– For	each	Reserves	tuple:		
– (suppose	on	avg)	1.2			I/Os to	get	data	entry	in	index
– +	1			I/O	to	get	(the	exactly	one)	matching	Sailors	tuple

• Total	cost:		
• 1000	+	100	*	1000	*	2.2	=	221,000	I/Os

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
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Cost	of	Index	Nested	Loops

• Hash-index	(Alt.	2)	on	sid of	Reserves	(as	inner),	sid is	NOT	a	key

• Cost	to	Scan	Sailors:		
– 500	page	I/Os,	80*500	tuples.

• For	each	Sailors	tuple:		
– 1.2	I/Os to	find	index	page	with	data	entries
– +	cost	of	retrieving	matching	Reserves	tuples

• Assuming	uniform	distribution,	2.5	reservations	per	sailor	(100,000	/	40,000).		
• Cost	of	retrieving	them		is	1	or	2.5	I/Os depending	on	whether	the	index	is	
clustered

• Total	cost	=		500	+	80	*	500	*	2.2		=	88,	500	if	clustered
• up	to	~	500	+	80	*	500	*	3.7	=	148,500	if	unclustered (approx)

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid
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Algorithms	for	Joins
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2.	SORT-MERGE	JOINS
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Sort-Merge	Join

• Sort	R	and	S	on	the	join	column
• Then	scan	them	to	do	a	``merge’’	(on	join	col.)
• Output	result	tuples.
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Sort-Merge	Join:	1/3

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Sailors

R

• Advance	scan	of	R	until	current	R-tuple	>=	current	S	tuple
– then	advance	scan	of	S	until	current	S-tuple	>=	current	R	tuple
– do	this	as	long	as	current	R	tuple	=	current	S	tuple
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Reserves

S



sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S R

WRITE	TWO	OUTPUT	TUPLES

• At	this	point,	all	R	tuples	with	same	value	in	Ri (current	R	
group)	and	all	S	tuples	with	same	value	in	Sj (current	S	
group)	
– match
– find	all	the	equal	tuples
– output	<r,	s>	for	all	pairs	of	such	tuples
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Sort-Merge	Join:	2/3



sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

WRITE	THREE	OUTPUT	TUPLES
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Sort-Merge	Join:	3/3

• Then	resume	scanning	R	and	S



sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

NO	MATCH,	CONTINUE	SCANNING	S

• …	and	proceed	till	end
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Sort-Merge	Join:	3/3



sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

S
R

WRITE	ONE	OUTPUT	TUPLE
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Sort-Merge	Join:	3/3
• …	and	proceed	till	end



Example	of	Sort-Merge	Join

• Typical	Cost:		O(M	log	M)	+	O(N	log	N)	+	(M+N)
– ignoring	B	(as	the	base	of	log)
– cost	of	sorting	R	+	sorting	S	+	merging	R,	S
– The	cost	of	scanning	in	merge-sort,	M+N,	could	be	M*N!	

• assume	the	same	single	value	of	join	attribute	in	both	R	and	S
• but	it	is	extremely	unlikely

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin
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Cost	of	Sort-Merge	Join

• 100	buffer	pages
• Sort	R:	

– (pass	0)	 1000/100	=	10	sorted	runs
– (pass	1)	merge	10	runs
– read	+	write,	2	passes
– 4	*	1000	=	4000	I/O

• Similarly,	Sort	S:	4	*	500	=	2000	I/O
• Second	merge	phase	of	sort-merge	join

– another	1000	+	500	=	1500	I/O
– assume	uniform	~2.5	matches	per	sid,	so	M+N	is	

sufficient
• Total	7500	I/O

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

M	=	1000	pages	in	R
pR =	100	tuples	per	page

N	=	500	pages	in	S
pS =	80	tuples	per	page

• Check	yourself:
– Consider	#buffer	

pages	35,	100,	300
– Cost	of	sort-merge	=	

7500	in	all	three
– Cost	of	block	nested	

16500,	6000,	2500
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Algorithms	for	Joins
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3.	HASH	JOINS
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Two	Phases

1. Partition	Phase
– partition	R	and	S	using	the	same	hash	function	h

2. Probing	Phase
– join	tuples	from	the	same	partition	(same	h(..)	

value)	of	R	and	S
– tuples	in	different	partition	of	h	will	never	join
– use	a	“different”	hash	function	h2 for	joining	

these	tuples	
• (why	different	– see	next	slide	first)
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Hash-Join
• Partition	both	

relations	using	hash	
function	h

• R	tuples	in	partition	i
will	only	match	S	
tuples	in	partition	i

v Read in a partition of R, 
hash it using h2 (≠ h). 

v Scan matching partition of 
S, search for matches.

B	main	memory	buffers DiskDisk
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2INPUT

1

hash
function
h B-1

Partitions

1

2

B-1

. . .

RS

Disk

Partitions
of	R	&	S

Input	buffer
for	Si

Hash	table	for	partition
Ri	(k	<	B-1	pages)

B	main	memory	buffers

Output	
buffer

Disk

Join	Result

hash
fn
h2

h2

Partitions

1

2
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Cost	of	Hash-Join
• In	partitioning	phase
– read+write both	relns;	2(M+N)
– In	matching	phase,	read	both	relns;	M+N	I/Os
– remember	– we	are	not	counting	final	write

• In	our	running	example,	this	is	a	total	of	4500	I/Os
– 3	*	(1000	+	500)
– Compare	with	the	previous	joins
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Sort-Merge	Join	vs.	Hash	Join

• Both	can	have	a	cost	of	3(M+N)	I/Os
– if	sort-merge	gets	enough	buffer	(see	14.4.2)

• Hash	join	holds	smaller	relation	in	buffer-
better	if	limited	buffer

• Hash	Join	shown	to	be	highly	parallelizable
• Sort-Merge	less	sensitive	to	data	skew

– also	result	is	sorted
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Other	operator	algorithms
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Algorithms	
for	Selection

• No	index,	unsorted	data
– Scan	entire	relation
– May	be	expensive	if	not	many	`Joe’s

• No	index,	sorted	data	(on	‘rname’)
– locate	the	first	tuple,	scan	all	matching	tuples
– first	binary	search,	then	scan	depends	on	matches

• B+-tree	index,	Hash	index
– Discussed	earlier
– Cost	of	accessing	data	entries	+	matching	data	records
– Depends	on	clustered/unclustered

• More	complex	condition	like	day<8/9/94	AND	bid=5	AND	sid=3
– Either		use	one	index,	then	filter
– Or	use	two	indexes,	then	take	intersection,	then	apply	third	condition
– etc.
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SELECT  *
FROM     Reserves R
WHERE   R.rname = ‘Joe’



Algorithms	
for	Projection

• Two	parts
– Remove	fields:	easy
– Remove	duplicates	(if	distinct	is	specified):	expensive

• Sorting-based
– Sort,	then	scan	adjacent	tuples	to	remove	duplicates
– Can	eliminate	unwanted	attributes	in	the	first	pass	of	merge	sort

• Hash-based
– Exactly	like	hash	join
– Partition	only	one	relation	in	the	first	pass
– Remove	duplicates	in	the	second	pass	

• Sort	vs	Hash
– Sorting	handles	skew	better,	returns	results	sorted
– Hash	table	may	not	fit	in	memory	– sorting	is	more	standard

• Index-only	scan	may	work	too
– If	all	required	attributes	are	part	of	index
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SELECT DISTINCT
R.sid, R.bid

FROM Reserves R



Algorithms	for	Set	Operations

• Intersection,	cross	product	are	special	cases	of	
joins

• Union,	Except
– Sort-based
– Hash-based
– Very	similar	to	joins	and	projection
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Algorithms	for	Aggregate	Operations

• SUM,	AVG,	MIN	etc.		
– again	similar	to	previous	approaches

• Without	grouping:
– In	general,	requires	scanning	the	relation.
– Given	index	whose	search	key	includes	all	attributes	in	the	SELECT

or	WHERE clauses,	can	do	index-only	scan

• With	grouping:
– Sort	on	group-by	attributes
– or,	hash	on	group-by	attributes
– can	combine	sort/hash	and	aggregate
– can	do	index-only	scan	here	as	well
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