
CompSci 516
Database	Systems

Lecture	11
Map-Reduce

and
Spark

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Announcements

• Practice	midterm	posted	on	sakai
– First	prepare	and	then	attempt!

• Midterm	next	Thursday	10/11	in	class
– Closed	book/notes,	no	electronic	devices
– Everything	until	and	including	today’s	lecture	(Lecture	11)	included

• HW2	to	be	published	soon
– First	run	your	code	on	local	machine	to	ensure	that	it	is	correct,	then	on	

AWS

2Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Reading	Material
• Recommended	(optional)	readings:

– Chapter	2	(Sections	1,2,3)	of	Mining	of	Massive	Datasets,	by	
Rajaraman and	Ullman:		http://i.stanford.edu/~ullman/mmds.html

– Original	Google	MR	paper	by	Jeff	Dean	and	Sanjay	Ghemawat,	OSDI’	
04:	http://research.google.com/archive/mapreduce.html

– “Resilient	Distributed	Datasets:	A	Fault-Tolerant	Abstraction	for	In-
Memory	Cluster	Computing”	(see	course	website)	– by	Matei Zaharia
et	al.	- 2012

3

Acknowledgement:	
Some	of	the	following	slides	have	been	borrowed	from
Prof.	Shivnath Babu,	Prof.	Dan	Suciu,	Prajakta Kalmegh,	and	
Junghoon Kang

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Map	Reduce

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4

Big	Data

it	cannot	be stored
in	one	machine

store	the	data	sets	
on	multiple	machines

Google	File	System

it	cannot	be processed in	
one	machine

parallelize	computation	
on	multiple	machines

MapReduce

Ack:	Slide	by	Junghoon Kang
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5

The	Map-Reduce	Framework

• Google	published	MapReduce	paper	in	OSDI	
2004,	a	year	after	the	Google	File	System	paper

• A	high	level	programming	paradigm
– allows	many	important	data-oriented	processes	to	be	
written	simply

• processes	large	data	by:
– applying	a	function	to	each	logical	record	in	the	input	
(map)

– categorize	and	combine	the	intermediate	results	
into	summary	values	(reduce)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6

Where	does	Google	use	MapReduce?

MapReduce

Input

Output

● crawled	documents
● web	request	logs

● inverted	indices
● graph	structure	of	web	documents
● summaries	of	the	number	of	pages	

crawled	per	host
● the	set	of	most	frequent	queries	in	a	day

Ack:	Slide	by	Junghoon Kang
7

Storage	Model

• Data	is	stored	in	large	files	(TB,	PB)
– e.g.	market-basket	data	(more	when	we	do	data	
mining)

– or	web	data
• Files	are	divided	into	chunks
– typically	many	MB	(64	MB)
– sometimes	each	chunk	is	replicated	for	fault	
tolerance	(later	in	distributed	DBMS)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8

Map-Reduce	Steps

• Input	is	typically	(key,	value)	pairs
– but	could	be	objects	of	any	type

• Map	and	Reduce	are	performed	by	a	number	of	processes
– physically	located	in	some	processors

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9

same	key

Map ReduceShuffle
Input
key-value	pairs

output
listssort	by	key

Map-Reduce	Steps

1. Read	Data
2. Map	– extract	some	info	of	interest	

in	(key,	value)	form
3. Shuffle	and	sort

– send	same	keys	to	the	same	reduce	
process

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10

same	key

Map ReduceShuffle
Input
key-value	pairs

output
listssort	by	key

4. Reduce
– operate	on	the	values	of	the	same	key
– e.g.	transform,	aggregate,	summarize,	

filter
5. Output	the	results	(key,	final-result)

Simple	Example:	Map-Reduce

• Word	counting
• Inverted	indexes

Ack:
Slide	by	Prof.	Shivnath Babu

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11

Map	Function

• Each	map	process	works	on	a	chunk	of	data
• Input:	(input-key,	value)
• Output:	(intermediate-key,	value)	-- may	not	be	the	same	as	input	key	value
• Example:	list	all	doc	ids	containing	a	word

– output	of	map	(word,	docid)	– emits	each	such	pair
– word	is	key,	docid is	value
– duplicate	elimination	can	be	done	at	the	reduce	phase

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

same	key

Map ReduceShuffle
Input
key-value	pairs

output
listssort	by	key

Reduce	Function

• Input:	(intermediate-key,	list-of-values-for-this-key)	– list	can	include	duplicates
– each	map	process	can	leave	its	output	in	the	local	disk,	reduce	process	can	retrieve	its	

portion
• Output:	(output-key,	final-value)
• Example:	list	all	doc	ids	containing	a	word

– output	will	be	a	list	of	(word,	[doc-id1,	doc-id5,	….])
– if	the	count	is	needed,	reduce	counts	#docs,	output	will	be	a	list	of	(word,	count)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

same	key

Map ReduceShuffle
Input
key-value	pairs

output
listssort	by	key

Example	Problem:	Map	Reduce
Explain	how	the	query	will	be	executed	in	
MapReduce

• SELECT	a,	max(b)	as	topb
• FROM	R
• WHERE	a	>	0
• GROUP	BY	a

Specify	the	computation	performed	in	the	map	and	
the	reduce	functions
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

Map

• Each	map	task
– Scans	a	block	of	R
– Calls	the	map	function	for	each	tuple
– The	map	function	applies	the	selection	predicate	to	the	
tuple

– For	each	tuple satisfying	the	selection,	it	outputs	a	record	
with	key	=	a	and	value	=	b

SELECT	a,	max(b)	as	topb			
FROM	R
WHERE	a	>	0
GROUP	BY	a

•When	each	map	task	scans	multiple	relations,	it	needs	to	output	something	like	
key	=	a	and	value	=	(‘R’,	b)	
which	has	the	relation	name	‘R’

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15

Shuffle

• The	MapReduce engine	reshuffles	the	output	of	the	
map	phase	and	groups	it	on	the	intermediate	key,	i.e.	
the	attribute	a

SELECT	a,	max(b)	as	topb			
FROM	R
WHERE	a	>	0
GROUP	BY	a

•Note	that	the	programmer	has	to	write	only	the	map	and	reduce	functions,	the	
shuffle	phase	is	done	by	the	MapReduce	engine	(although	the	programmer	can	
rewrite	the	partition	function),	but	you	should	still	mention	this	in	your	answers

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16

Reduce
SELECT	a,	max(b)	as	topb
FROM	R
WHERE	a	>	0
GROUP	BY	a

• Each	reduce	task
• computes the aggregate value max(b) = topb for each group

(i.e. a) assigned to it (by calling the reduce function)
• outputs the final results: (a, topb)

•Multiple	aggregates	can	be	output	by	the	reduce	phase	like
key	=	a	and	value	=	(sum(b),	min(b)) etc.

• Sometimes	a	second	(third	etc)	level	of	Map-Reduce	phase	might	be	needed

A local combiner can be used to compute local max before data
gets reshuffled (in the map tasks)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

More	Terminology

• A	Map-Reduce	“Job”
– e.g.	count	the	words	in	all	docs
– complex	queries	can	have	multiple	MR	jobs

• Map	or	Reduce	“Tasks”
– A	group	of	map	or	reduce	“functions”
– scheduled	on	a	single	“worker”

• Worker	
– a	process	that	executes	one	task	at	a	time
– one	per	processor,	so	4-8	per	machine

• A	master	controller	
– divides	the	data	into	chunks
– assigns	different	processors	to	execute	the	map	function	on	each	

chunk
– other/same	processors	execute	the	reduce	functions	on	the	outputs	of	

the	map	functions

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18

however,	there	is	no	uniform
terminology	across	systems

Ack:	Slide	by	Prof.	Dan	Suciu

Why	is	Map-Reduce	Popular?

• Distributed	computation	before	MapReduce
– how	to	divide	the	workload	among	multiple	machines?
– how	to	distribute	data	and	program	to	other	machines?
– how	to	schedule	tasks?
– what	happens	if	a	task	fails	while	running?
– …	and	…	and	...

• Distributed	computation	after	MapReduce
– how	to	write	Map	function?
– how	to	write	Reduce	function?

• Developers’	tasks	made	easy

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19

Ack:	Slide	by	Junghoon Kang

Handling	Fault	Tolerance	in	MR

• Although	the	probability	of	a	machine	failure	is	
low,	the	probability	of	a	machine	failing	among	
thousands	of	machines	is	common

• Worker	Failure
– The	master	sends	heartbeat	to	each	worker	node
– If	a	worker	node	fails,	the	master	reschedules	the	
tasks	handled	by	the	worker

• Master	Failure
– The	whole	MapReduce	job	gets	restarted	through	a	
different	master

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20
Ack:	Slide	by	Junghoon Kang

Other	aspects	of	MapReduce
• Locality

– The	input	data	is	managed	by	GFS
– Choose	the	cluster	of	MapReduce	machines	such	that	those	

machines	contain	the	input	data	on	their	local	disk
– We	can	conserve	network	bandwidth

• Task	granularity
– It	is	preferable	to	have	the	number	of	tasks	to	be	multiples	of	

worker	nodes
– Smaller	the	partition	size,	faster	failover	and	better	granularity	

in	load	balance,	but	it	incurs	more	overhead	
– Need	a	balance

• Backup	Tasks
– In	order	to	cope	with	a	“straggler”,	the	master	schedules	backup	

executions	of	the	remaining	in-progress	tasks

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21
Ack:	Slide	by	Junghoon Kang

Apache	Hadoop

• Apache	Hadoop	has	an	open-source	version	of	
GFS	and	MapReduce
– GFS	->	HDFS	(Hadoop	File	System)
– Google	MapReduce	->	Hadoop	MapReduce

• You	can	download	the	software	and	
implement	your	own	MapReduce	applications

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22
Ack:	Slide	by	Junghoon Kang

Map	Reduce	Pros	and	Cons

• MapReduce	is	good	for	off-line	batch	jobs	on	
large	data	sets

• MapReduce	is	not	good	for	iterative	jobs	due	
to	high	I/O	overhead	as	each	iteration	needs	
to	read/write	data	from/to	GFS

• MapReduce	is	bad	for	jobs	on	small	datasets	
and	jobs	that	require	low-latency	response

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23
Ack:	Slide	by	Junghoon Kang

Spark

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24

See	the	RDD	paper	from	
the	course	website

What	is	Spark?

• Not	a	modified	version	of	Hadoop
• Separate,	fast,	MapReduce-like	engine
– In-memory	data	storage	for	very	fast	iterative	queries
–General	execution	graphs	and	powerful	optimizations
–Up	to	40x	faster	than	Hadoop
–Up	to	100x	faster	(2-10x	on	disk)	

• Compatible	with	Hadoop’s	storage	APIs
– Can	read/write	to	any	Hadoop-supported	system,	including	HDFS,	
HBase,	SequenceFiles,	etc

Borrowed slide

Distributed	in-memory	large	scale	data	processing	engine!

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25

Applications
(Big	Data	Analysis)

• In-memory	analytics	&	anomaly	detection	
(Conviva)

• Interactive	queries	on	data	streams	(Quantifind)
• Exploratory	log	analysis	(Foursquare)
• Traffic	estimation	w/	GPS	data	(Mobile	
Millennium)

• Twitter	spam	classification	(Monarch)
• .	.	.

Borrowed slide

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26

Why	a	New	Programming	Model?
• MapReduce	greatly	simplified	big	data	analysis
• But	as	soon	as	it	got	popular,	users	wanted	
more:
–More	complex,	multi-stage	iterative applications	
(graph	algorithms,	machine	learning)
–More	interactive ad-hoc	queries
–More	real-time online	processing
• All	three	of	these	apps	require	fast	data	sharing
across	parallel	jobs

Borrowed slide

NOTE: What were the workarounds in MR world?
Ysmart [1], Stubby[2], PTF[3], Haloop [4], Twister [5]

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27

Data	Sharing	in	MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO
Borrowed slide

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28

iter. 1 iter. 2 . . .

Input

Data	Sharing	in	Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk
Borrowed slide

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

RDD:	Spark	Programming	Model

• Key	idea:	Resilient	Distributed	Datasets	
(RDDs)
–Distributed	collections	of	objects	that	can	be	
cached	in	memory	or	stored	on	disk	across	
cluster	nodes
–Manipulated	through	various	parallel	operators
–Automatically	rebuilt	on	failure (How?	Use	
Lineage)

Borrowed slide

Ack:	Slide	by	Prajakta Kalmegh

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

Additional	Slides	on	Spark
(Optional	Reading)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31

Ack:	The	following	slides	are	by	
Prajakta Kalmegh

More on RDDs
• Transformations: Created through deterministic operations on either

‣ data in stable storage or

‣ other RDDs

• Lineage: RDD has enough information about how it was derived from other
datasets

• Immutable: RDD is a read-only, partitioned collection of records

‣ Checkpointing of RDDs with long lineage chains can be done in the
background.

‣Mitigating stragglers: We can use backup tasks to recompute
transformations on RDDs

• Persistence level: Users can choose a re-use storage strategy (caching in
memory, storing the RDD only on disk or replicating it across machines; also
chose a persistence priority for data spills)

• Partitioning: Users can ask that an RDD’s elements be partitioned across
machines based on a key in each record

32

RDD Transformations and
Actions

*http://www.tothenew.com/blog/spark-1o3-spark-internals/

*https://spark.apache.org/docs/1.0.1/cluster-overview.html

Note:	Lazy	Evaluation:	A	very	important	concept

33

DAG	of	RDDs

*https://trongkhoanguyenblog.wordpress.com/2014/11/27/understand-rdd-operations-transformations-and-actions/
34

Fault	Tolerance

• RDDs	track	the	series	of	transformations	used	
to	build	them	(their	lineage)	to	recompute	lost	
data

• E.g:
messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

Borrowed slide

Tradeoff:	
Low	Computation	cost	(cache	more	RDDs)	

VS	High	memory	cost	(not	much	work	for	GC)
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35

Representing RDDs
• Graph-based representation. Five components :

36

Representing RDDs
(Dependencies)

one-to-one many-to-one many-to-many

shuffle

37

Representing RDDs (An
example)

38

Advantages of the RDD
model

39

Checkpoint!

• Data	Sharing	in	Spark	and	Some	Applications
• RDD	Definition,	Model,	Representation,	
Advantages

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40

Other	Engine	Features:	
Implementation

• Not	covered	in	details	
• Some	Summary:
• Spark	local	vs	Spark	Standalone	vs	Spark	cluster	(Resource	sharing	
handled	by	Yarn/Mesos)

• Job	Scheduling:	 DAGScheduler	vs	TaskScheduler (Fair	vs	FIFO	at	task	
granularity)

• Memory	Management:	serialized	in-memory(fastest)	VS	deserialized	in-
memory	VS	on-disk	persistent

• Support	for	Checkpointing:	Tradeoff	between	using	lineage	for	
recomputing	partitions		VS	checkpointing	partitions	on	stable	storage

• Interpreter	Integration: Ship	external	instances	of	variables	referenced	in	
a	closure	along	with	the	closure	class	to	worker	nodes	in	order	to	give	
them	access	to	these	variables

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41

