Apache Spark

Prajakta Kalmegh
PhD Student, Duke University

MapReduce

Hadoop’s Original Architecture

MapReduce

HDFS
2

cloudera

Word Count

Input Files

Apple Orange Mango
Orange Grapes Plum

Apple Plum Mango
Apple Apple Plum

Sort and
Shuffle
Map Key Value Reduce K.ey
Each line passed to Splitting Value Pairs
inividual mapper
instances Appigl
Apple,1 Apple,4
Apple,1 Applel
Apple Orange Mango | ! Orange,1 Apple 1
Mango, 1
Orange,1 Grapes,1 Grapes,1
Orange Grapes Plum (——{ Grapes,1
Plum,1
Mango, 1 y -
Applel Mango, 1 ango,
Apple Plum Mango —® Plum,1
Mango,1
Orange, 1 Orange, 2
/ Orange,1
Applel
Apple Apple Plum ——(Applel
Plum,1 Plum,1 :
Plum,1 Fhum; 3

Final Output

Apple, 4
Grapes,1
Mango, 2
Orange,2
Plum,3

Plum,1

The MapReduce Breakthrough

o1
O N e

» Data locality: Automatic split computation and appropriate launch of mappers

Key advances in MapReduce:

« Fault-tolerance: Write-out of intermediate results and restartable mappers provides ability to run on commodity
hardware

« Linear scalability: Combination of locality + programming model forces developers to write generally scalable
solutions

cloudera

Compute Engine

Why a New Pregrarmrairg-Modger?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:
» More complex, multi-stage iterative applications (graph
algorithms, machine learning)
» More interactive ad-hoc queries
» More real-time online processing

All three of these apps require fast data sharing
across parallel jobs

NOTE: What were the workarounds in MR world?
Ysmart [1], Stubby[2], PTF[3], Haloop [4], Twister [5]

Borrowed slide

Monthly query workload

I nte ra Ctive S peed of one 3000-node Dremel instance

percentage of queries

30
25
20
15
10

5

O | |
execution time

Most queries complete under 10 sec

GO Ugle Dremel: Interactive Analysis of Web-Scale Datasets. VLDB'10 Borrowed slide 7
S — e EE—

Therefore, people built specialized
systems as workarounds...

‘ MapReduce !

General Batch Processing Specialized Systems:
iterative, interactive, streaming, graph, etc.

Originally developed by UC Berkeley starting in 2009 Moved to an
Apache project in 2013

Apache Spark: A Better MapReduce

Distributed in-memory large scale data processing engine!
Easy, Expressive API
- Rich API (Java, Scala, and Python)

« Interactive shell
. « 2-5x less code needed than MR

Unlike the various specialized systems, Spark’s goal was to generalize

MapReduce to support new apps within same engine
v'v T O W I UUJLU AN I LINT

*and powerful optimizations
- General execution graphs
* In-memory storage

» Order-of-magnitude improvement
over VIR

cloudera

e Stream processing
* |log files
e sensor data
* financial transactions

* Machine learning
* store data in memory and rapidly run repeated queries

* Interactive analytics

* business analysts and data scientists increasingly want to explore their data by asking
a question, viewing the result, and then either altering the initial question slightly or
drilling deeper into results. This interactive query process requires systems such as
Spark that are able to respond and adapt quickly
* Data integration

* Extract, transform, and load (ETL) processes

10

e Introduction to Spark

Checkpoint!

Runs
* Locally

e distributed a cross a cluster

* Requires a cluster manager
* Yarn
* Spark Stand alone
* Mesos

spark
* |Interactive shell

* Data exploration
* Ad-hoc analysis

e Submit an application
is offten used alongside Hadoop’s data storage module, HDFS

can also integrate equally well with other popular data storage subsystems such
as HBase, Cassandra,...

12

Spark execution model

* Application

* Driver

° Executer Worker Node

* Job Executor pYY
* Stage 3

Driver Program Cluster Manager
SparkContext

Worker Node !

Erccuor [T

13

At runtime, a Spark application maps to a single driver process and a set of executor
processes distributed across the hosts in a cluster

The driver process manages the job flow and schedules tasks and is available the entire
time the application is running.

* Typically, this driver process is the same as the client process used to initiate the job
* |ninteractive mode, the shell itself is the driver process

The executors are responsible for executing work, in the form of tasks, as well as for
storing any data that you cache.

Invoking an action inside a Spark application triggers the launch of a job to fulfill it

Spark examines the dataset on which that action depends and formulates an execution
plan.

The execution plan assembles the dataset transformations into stages. A stage is a
collection of tasks that run the same code, each on a different subset of the data.

14

e APIs for

* Java

* Python
e Scala

* R

e Spark itself is written in Scala

* Percent of Spark programmers who use each language, In 2016
* 88% Scala, 44% Java, 22% Python

* | think if it were done today, we would see the rank as Scala, Python,
and Java

15

* Introduction to Spark

« Spark Execution Model

Checkpoint!

Recall: Data Sharing in MapReduce

HDFS HDFS HDFS HDFS

read write read write
Input
HDES query : result 1

read
: result 2
-

query : result 3
Input

[Slow due to replication, serialization, and disk 10 7]

Borrowed slide

Data

Input

Input

Sharing in Spark

one-time
rocessin

Distributed
memory >

10-100% faster than network and disk

1

Borrowed slide

* Spark’s basic data model is called a Resilient Distributed Dataset
(RDD)

* It is designed to support in-memory data storage, distributed across a
cluster

* fault-tolerant
* tracking the lineage of transformations applied to data

» Efficient

» parallelization of processing across multiple nodes in the cluster
* minimization of data replication between those nodes.

19

* Two basic types of operations on RDDs

* Transformations
* Transform an RDD into another RDD, such as mapping, filtering, and more

* Actions:
* Process an RDD into a result, such as count, collect, save, ...

* The original RDD remains unchanged throughout

* The chain of transformations from RDD1 to RDDn are logged
* and can be repeated in the event of data loss or the failure of a cluster node

20

* Transformations are lazily processed, only upon an action

* Transformations create a new RDD from an existing one

* Transformations might trigger an RDD repartitioning, called a shuffle
* Intermediate results can be manually cached in memory/on disk

* Spill to disk can be handled automatically

Working With RDDs

textF . textF ; txt
Note: Lazy Evaluation: A very important concept »{ ey
*J RDD %\ Action 4—>’ Value |
\ ! / |
{_Transformations // ||
A ;
v v L)_an-_; thSpark t
Y -
! LinesWithSpark. f 2
: # Apache Spark
I
1
I
1
linesWithSpark = textFile.filter(lambda line: "Spark” in line)
21

*http://www.tothenew.com/blog/spark-103-spark-internals/

Representing RDDs

« Five components:

Operation Meaning

partitions() Return a list of Partition objects

preferredLocations(p) | List nodes where partition p can be
accessed faster due to data locality

dependencies() Return a list of dependencies

iterator(p, parentlters) | Compute the elements of partition p Computation
given iterators for its parent partitions |function

partitioner() Return metadata specifying whether helps in partitions
the RDD is hash/range partitioned baged optimization

Table 3: Interface used to represent RDDs in Spark.

22

Representing RDDs (Dependencies)

shuffle

Narrow Dependencies: Wide Dependencies:

—

(I1]
gid

map, filter groupByKey

join with inputs
co-partitioned

CLICT)
it

join with inputs not

uTon M anv-to-on co-partitioned
one-to-one any-to-onée many-to-many

Figure 4. Examples of narrow and wide dependencies. Each

box 1s an RDD, with partitions shown as shaded rectangles.
23

Representing RDDs (An example)

- ———————————————————————— —

\
N

T S e S SRR SRR SRR R R R R R R R R R e e e

\

CLLI)

N

—_— e — e e e e e e e e e e e — — —

T e e e e e e e e e e s e e e S SEe SEE e S S e e SEE S S S

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RA%, so we run stage 2 and then 3.

* sc.Parallelize(List(1, 2,3,4))

* sc.textFile(“file.txt”)
* sc.textFile(“directory/*.txt”)
* sc.textFile(“hdfs/namenode:9000/path/file.txt”)

* Sc.hadoopFile(keyClass, valueClass , inputFmt , conf)

25

Details for Job 0

Status: SUCCEEDED
Completed Stages: 2

* Stands for Directed Acyclic Graph » Event Timelne

v DAG Visualization

* For every spark job a DAG of tasks is created

textFile reduceByKey

ShuffledRDD [4]

v

20

* Introduction to Spark

» Spark Execution Model

Checkpoint! - RDD Definition, Model,
Representation, Advantages

Spark Libraries

e Spark SQL

* For working withstructured data. Allows you to seamlessly mix SQL queries
with Spark programs

e Spark Streaming

* Allows you to build scalable fault-tolerant streaming applications

* MLlib

* Implements common machine learning algorithms

* GraphX

* For graphs and graph-parallel computation

Spark SQL

structured data

Spark Streaming
real-time

MLib
machine
learning

GraphX
graph
processing

Standalone Scheduler YARN
‘ I 08

How Catalyst Works: An Overview

Catalyst

SQL AST Transformations

I
I
I
I
I
! Optimized

DataFrame Query Plan Query Plan

f
Dataset i
(Java/Scala) }

I

Abstractions of users’programs
(Trees)

€databricks

29

Catalyst Optimizer

 Applied to Spark SQL and DataFrame API

» Extensible Optimizer

« Automatically finds the most efficient plan to execute data operations in the
users operation

Logical Physical
Analysis Optimization Planning

Trees: Abstractions of Users Programs

Query Plan INgec ol sum(v)
——__——"‘—— tl.ld,
) Sum(V) o Project 1+2+tl1l.value
FROM (- J
o o o o o as v
SELECT ==~
Tl:z10; tl.id=t2.id
1 T T L tl-.YElEE AS v t2.1d>50*1000
FROM t1 JOIN t2 I T
WHERE ~~cccccoma== s

tl.id = t2.1id AND
t2.id > 50 * 1000) tmp

€databricks 14

31

Physical Plan

Hash-
Aggregate

sum(v)

« APhysical Plan describescomputation
on datasets with specific definitions on
how to conduct the computation

£1.1d;
1+2+t1.value
as v

. t1.id=t2.id
LSS 45 . id>50%1000

Sort-Merge
Join

——

JSONScan
(t2)

Parquet Scan

(t1)
€databricks 16

32

Checkpoint!

* Introduction to Spark
» Spark Execution Model

« RDD Definition, Model,
Representation

« Spark Architecture and
Introduction to SparkSQL Data
Processing Engine

More on RDDs

- Lineage: RDD has enough information about how it was derived
from other datasets

- Immutable: RDD is a read-only, partitioned collection of records

» Checkpointing of RDDs with long lineage chains can be done in
the background.

» Mitigating stragglers: We can use backup tasks to recompute
transformations on RDDs

- Persistence level: Users can choose a re-use storage strateqgy
(caching in memory, storing the RDD only on disk or replicating
it across machines; also chose a persistence priority for data

spills)

34

DAG of RDDs

RDD Objects DAGScheduler TaskScheduler Worker
| | | | -~ - Cluster
~ — s manager Threads
| | DAG TaskSet Task Block
_. | > — b > ey
| | — <€ manager
rddl.join(rdd2) split graph into launch tasks via execute tasks
.groupBy(..)
Filter () stages of tasks cluster manager
| submit each retry failed or store and serve
build operator DAG stage as ready straggling tasks blocks
stage
failed
G

*https://trongkhoang uyenblog.woréﬁess.comlzm 4/11/27/understand-rdd-operations-transformations-and-actions/

Fault Tolerance

RDDs track the series of transformations used to
build them (their lineage) to recompute lost data

Eg messages

textFile(...).filter(_.contains(“error™))
.map(_.split(‘\t’)(2))

/

N

HadoopRDD
path = hdfs://...

\

/

J

N

FilteredRDD

func = _.contains(...)

\

/

J

N

MappedRDD
func = _.split(...)

\

J

Borrowed slide

Advantages of the RDD model

Aspect RDDs Distr. Shared Mem.
Reads Coarse- or fine-grained | Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial (immutable) Up to app / runtime

Fault recovery |Fine-grained and low- | Requires checkpoints
overhead using lineage |and program rollback

Straggler Possible using backup | Difficult

mitigation tasks

Work Automatic based on Up to app (runtimes
placement data locality aim for transparency)

Behavior 1f not | Similar to existing data | Poor performance
enough RAM | flow systems (swapping?)

Table 1: Comparison of RDDs with distributed shared memory.
37

Other Engine Features: Implementation

« Not covered in details
« Some Summary:

 Sparklocal vs Spark Standalone vs Spark cluster (Resource sharing handled by
Yarn/Mesos)

« Job Scheduling: DAGScheduler vs TaskScheduler (Fair vs FIFO at task
granularity)

« Memory Management: deserialized in-memory(fastest) VS serialized in-memory
VS on-disk persistent

 Support for Checkpointing: Tradeoff between using lineage for recomputing
partitions VS checkpointing partitions on stable storage

Checkpoint!

* Introduction to Spark
» Spark Execution Model

« RDD Definition, Model,
Representation

» Spark Architecture and
Introduction to SparkSQL Data
Processing Engine

 Final words on RDD Features
and Advantages

39

Slide Credits

https://www.slideshare.net/ZahraEskandarii/apache-spark-
fundamentals-9540777/8

https://www.slideshare.net/indicthreads/scrap-your-mapreduce-
apache-spark

https://www.slideshare.net/databricks/sparksqgl-a-compiler-from-
gueries-to-rdds

40

