
CompSci 516
Database	Systems

Lecture	15
Transactions	

– Concurrency	Control

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Announcements
• HW2	deadline	10/31	(Wed)	11:55	pm!

• Project	midterm	report	due	11/5	(Mon,	
extended)
– Keep	working	on	your	proposed	project	too
– Send	me	an	email	if	you	want	to	discuss	your	
project

2Duke	CS,	Fall	2017 CompSci	516:	Database	Systems



Announcements
• HW2	deadline	- Saturday,	10/21,	5	pm
– submit	on	time

• Project	midterm	report	deadline	- Wednesday,	
11/01,	11:55	pm
– Keep	working	on	your	proposed	project

3Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Reading	Material
• [RG]
– Chapter	17.5.1,	17.5.3,	17.6

• [GUW]
– Chapter	18.8,	18.9
– Today’s	examples	are	from	GUW	(lecture	slides	will	be	sufficient	for	this	class	

and	exams)

4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan	and		Dr.	Gehrke.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Today’s	topics

• Dynamic	databases	and	Phantom	problem	
(17.5.1)

• Multiple—granularity	locking	(17.5.3)
• Optimistic	concurrency	control	(17.6.1)
• Timestamp-based	concurrency	control	
(17.6.2)

• Multi-version	concurrency	control	(17.6.3)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5



Dynamic	Database	
and	Phantom	Problem

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6



Dynamic	Databases
• If	we	relax	the	assumption	that	the	DB	is	a	fixed	
collection	of	objects

• Then	even	Strict	2PL	will	not	assure	
serializability

• causes	”Phantom	Problem”	in	dynamic	
databases

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7



Example:	Phantom	Problem
• T1	wants	to	find	oldest	sailors	in	rating	levels	1	and	2

– Suppose	the	oldest	at	rating	1	has	age	71
– Suppose	the	oldest	at	rating	2	has	age	80
– Suppose	the	second	oldest	at	rating	2	has	age	63

• Another	transaction	T2	intervenes:
– Step	1:	T1	locks	all	pages	containing	sailor	records	with	rating	=	1,	and	finds	oldest	

sailor	(age	=	71)
– Step	2:	Next,	T2	inserts	a	new	sailor	onto	a	new	page	(rating	=	1,	age	=	96)	
– Step	3:	T2	locks	pages	with	rating	=	2,	deletes	oldest	sailor	with	rating	=	2	(age	=	80),	

commits,	releases	all	locks
– Step	4:	T1	now	locks	all	pages	with	rating	=	2,	and	finds	oldest	sailor	(age	=	63)

• No	consistent	DB	state	where	T1	is	“correct”
– T1	found	oldest	sailor	with	rating	=	1	before	modification	by	T2
– T1	found	oldest	sailor	with	rating	=	2	after modification	by	T2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8



What	was	the	problem?
• Conflict	serializability guarantees	serializability only	if	
the	set	of	objects	is	fixed

• Problem:	
– T1	implicitly	assumed	that	it	has	locked	the	set	of	all	sailor	
records	with	rating	=	1

– Assumption	only	holds	if	no	sailor	records	are	added	while	
T1	is	executing

– Need	some	mechanism	to	enforce	this	assumption

• Index	locking	and	predicate	locking
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9



Index	Locking

• If	there	is	a	dense	index	on	the	rating	field	
using	Alt.	(2),	T1	should	lock	the	index	page	
containing	the	data	entries	with	rating	=	1
– If	there	are	no	records	with	rating	=	1,	T1	must	lock	

the	index	page	where	such	a	data	entry	would	be,	if	
it	existed

• If	there	is	no	suitable	index,	T1	must	lock	all	
pages,	and	lock	the	file/table	to	prevent	new	
pages	from	being	added
– to	ensure	that	no	new	records	with	rating	=	1	are	

added

r=1

Data

Index

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10



Predicate	Locking

• Grant	lock	on	all	records	that	satisfy	some	logical	
predicate,		e.g.	rating	=	1	or,	age	>	2*salary	

• Index	locking	is	a	special	case	and	an	efficient	
implementation	of	predicate	locking
– e.g.	Lock	on	the	index	pages	for	records	satisfying	rating	=	1

• The	general	predicate	locking	has	a	lot	of	locking	
overhead	and	so	not	commonly	used

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11



Multiple-granularity	Locking

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12



DB	Objects	may	contain	other	objects

• A	DB	contains	several	files
• A	file	is	a	collection	of	pages
• A	page	is	a	collection	of	records/tuples

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13

Tuples

Tables

Pages

Database

contains



Carefully	choose	lock	granularity

• If	a	transaction	needs	most	of	the	pages
– set	a	lock	on	the	entire	file
– reduces	locking	overhead

• If	only	a	few	pages	are	needed
– lock	only	those	pages

• Need	to	efficiently	ensure	no	conflicts
– e.g.	a	page	should	not	be	locked	by	T1	if	T2	already	holds	the	lock	on	

the	file

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14

Tuples

Tables

Pages

Database

contains



New	Lock	Modes	&	Protocol
• Allow	transactions	to	lock	at	each	level,	but	with	
a	special	protocol	using	new	“intention	locks”:

• Before	locking	an	item	(S	or	X),	transaction	must	set	
“intention	locks”	(IS	or	IX)	on	all	its	ancestors

• For	unlock,	go	from	specific	to	general	(i.e.,	bottom-
up)
• otherwise	conflicting	lock	possible	at	root

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö

Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Öother	tr.	cannot	have	IX	or	X

other	tr.	cannot	have	any	other	lock

conflicting	locks

Tuples

Tables

Pages

Database

contains

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15



SIX	mode	=	S	+	IX

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö

Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Öother	tr.	cannot	have	IX	or	X

other	tr.	cannot	have	any	other	lock

• Common	situation:	a	transaction		needs	to	read	
an	entire	file	and	modify	a	few	records
– S	lock
– IX	lock	(to	subsequently	lock)	
some	containing	objects	in	X	mode

• Obtain	a	SIX	lock
– conflict	with	either	S	or	IX

conflicting	locks

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16



Transaction	in	SQL
• SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED	[	;	]
• BEGIN	TRANSACTION
• <….	SQL	STATEMENTS>
• COMMIT	or	ROLLBACK

• Four	isolation	levels	:	performance	and	serializability

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

Dirty	Read Unrepeatable	
Read

Phantom

READ	UNCOMMITTED Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE	READS No No Maybe

SERIALIZABLE No No No



Approaches	to	CC	
other	than	locking

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18



Approaches	to	
Concurrency	Control	(CC)

• Lock-based	CC
– (so	far)

• Optimistic	CC
– today

• Time-stamp-based	CC
– today

• Multi-version	CC
– today

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19

uses	“timestamps”	in	some	way



Timestamp

• Each	transaction	gets	a	unique	timestamp

• e.g.	
– system’s	clock	value	when	it	is	issued	by	the	
scheduler	(assume	one	transactions	issued	on	one	
tick	of	the	clock)

– or	a	unique	number	given	by	a	counter	
(incremented	after	each	transaction)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20



Locking	is	a	“pessimistic	or	
conservative”	approach	to	CC

• Locking	is	a	conservative	approach	in	which	conflicts	are	
prevented

• Either	uses	“blocking”	(delay)	or	abort
– note	the	several	usages	of	a	“block”!

• Disadvantages	of	locking:
– Lock	management	overhead
– Deadlock	detection/resolution
– Lock	contention	for	heavily	used	objects

• If	only	light	contention	for	data	objects,	still	the	overhead	
of	following	a	locking	protocol	is	paid

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21



Optimistic	CC

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22



A	second	approach	to	CC:	
Optimistic	CC	(Kung-Robinson)

• If	conflicts	are	rare,	we	might	be	able	to	gain	
concurrency	by	not	locking,	and	instead	checking	
for	conflicts	before	transactions	commit

• Premise:	
– most	transactions	do	not	conflict	with	other	
transactions

– be	as	permissive	as	possible	in	allowing	transactions	
to	execute

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23



Kung-Robinson	Model
• Transactions	have	three	phases:

1. READ:		Read	from	the	database,	but	make	changes	to	”private	copies”	of	
objects	(assume	private	workspace)

2. VALIDATE:		When	decide	to	commit,	also	check	for	conflicts	with	
concurrently	executing	transactions
• if	a	possible	conflict,	abort,	clear	private	workspace,	restart

3. WRITE: If	no	conflict,	make	local	copies	of	changes	public	(copy	them	into	
the	database)

ROOT

old

new

modified
objects

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24



Validation
• Test	conditions	that	are	sufficient to	ensure	that	no	conflict	

occurred

• Each	transaction	Ti is	assigned	a	numeric	id
– Use	a	timestamp	TS(Ti)

• Transaction	ids	assigned	at	end	of	READ	phase,	just	before	
validation	begins

• Validation	checks	whether	the	timestamp	ordering	has	an	
equivalent	serial	order

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25



Notation

• TS(Ti): Transaction	id	or	timestamp	of	Ti
BEFORE	the	validation	step	starts

• ReadSet(Ti): Set	of	objects	read	by	transaction	Ti

• WriteSet(Ti): Set	of	objects	modified	by	transaction	Ti

next,	three	tests	used	for	validation

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26



Validation	Tests
• To	validate	Tj

– for	each	committed transactions	Ti
– such	that	TS(Ti)	<	TS(Tj)
– one	of	the	three	validation	tests	(TEST	1,	TEST	2,	TEST	3)	must	be	

satisfied
– (see	the	tests	next)

• Ensures	that	Tj-s	modifications	are	not	visible	to	the	previous	
transaction	Ti

• Check	yourself:	No	RW,	WR,	WW	conflicts	if	any	of	these	tests	
satisfy

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27



Test	1

• For	all	i and	j	such	that	TS(Ti)	<	TS(Tj),	check	that	
Ti completes	(all	three	phases)	before	Tj begins

Ti
TjR V W

R V W

• Tj sees	some	changes	by	Ti
• But	they	execute	completely	in	serial	order

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28



Test	2
• For	all	i and	j	such	that	TS(Ti)	<	TS(Tj),	check	that:
– Ti completes	before	Tj begins	its	Write	phase	+
– WriteSet(Ti)	∩	ReadSet(Tj)		is	empty

Ti

Tj
R V W

R V W
Does	Tj read	dirty	data?	Does	Ti overwrite	Tj’s writes?

• Allows	Tj to	read	objects	while	Ti is	still	modifying	objects
• But	no	conflict	because	Tj does	not	read	any	object	modified	by	Ti
• Tj can	overwrite	some	writes	by	Ti (ok	since	Tj starts	later)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

figure	not	exactly	correct	since
V	and	W	steps	cannot	overlap



Test	3
• For	all	i and	j	such	that	Ti <	Tj,	check	that:

– Ti completes	Read	phase	before	Tj completes	its	Read	+
– WriteSet(Ti)	∩	ReadSet(Tj)		is	empty +
– WriteSet(Ti)	∩	WriteSet(Tj)		is	empty

Ti

Tj
R V W

R V W

i.e.	Ti does	not
write	any	object
that	Tj reads	or	writes

Does	Tj read	dirty	data?	Does	Ti overwrite	Tj’s writes?

• Allows	Ti and	Tj write	objects	at	the	same	time
• More	overlap	than	Test	2
• But	the	sets	of	objects	written	cannot	overlap	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

figure	not	exactly	correct	since
V	and	W	steps	cannot	overlap



Comments	on	Serial	Validation
• List	of	objects	written/read	by	each	transaction	has	to	be	

maintained
• While	one	transaction	is	validating,	no	transaction	can	commit

– otherwise	some	conflicts	may	be	missed

• Assignment	of	transaction	id,	validation,	and	the	Write	phase	
are	inside	a	critical	section
– i.e.,	Nothing	else	goes	on	concurrently
– If	Write	phase	is	long,	major	drawback

• The	write	phase	of	a	validated	transactions	must	be	
completed	before	other	tr.	s	are	validated	
– i.e.	changes	should	be	reflected	to	the	DB	from	private	workspace

• Optimization	for	Read-only	transactions:
– Don’t	need	critical	section	(because	there	is	no	Write	phase)	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31



Overheads	in	Optimistic	CC
• Must	record	read/write	activity	in	ReadSet	and	WriteSet	per	

transaction
– Must	create	and	destroy	these	sets	as	needed

• Must	check	for	conflicts	during	validation,	and	must	make	
validated	writes	``global’’
– Critical	section	can	reduce	concurrency

• Optimistic	CC	restarts	transactions	that	fail	validation
– Work	done	so	far	is	wasted;	requires	clean-up

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 32



Optimistic	CC	vs	locking

• If	there	are	few	conflicts	and	validation	is	
efficient
– optimistic	CC	is	better	than	locking

• If	many	conflicts
– cost	of	repeatedly	restarting	transactions	hurts	
performance	significantly

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 33



Timestamp-based	CC

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 34



A	third	approach	to	CC
So	far…
• Lock-based	CC

– conflicting	actions	of	different	transactions	are	ordered	by	the	order	in	
which	locks	are	obtained

– locking	protocols	ensure	serializability

• Optimistic	CC
– A	timestamp	ordering	is	imposed	on	transactions
– Validation	checks	that	all	conflicting	transactions	occurred	in	the	same	order

• Next:	Timestamp-based	CC
– another	use	of	timestamp

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35



Timestamp	CC
Main	Idea:		
• Give	each	object	O

– a	read-timestamp	RT(O),	and	
– a	write-timestamp	WT(O)

• RG	uses	RTS/WTS,	GUW	uses	RT/WT,	either	of	these	is	fine

• Give	each	transaction	T
– a	timestamp	TS(T)	when	it	begins

• If	
– action	ai of	Ti conflicts	with	action	aj of	Tj,	
– and	TS(Ti)	<	TS(Tj)

• then	
– ai must	occur	before	aj

• Otherwise,	abort	and	restart	violating	transaction
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36



Request	for	a	read:	RT(X)

1. If	TS(T)	>=	WT(X)
– last	written	by	a	previous	transaction	–- OK	(i.e.	“physically	

realizable”)
– If	C(X)	is	true	–- check	if	previous	transaction	has	committed

• Grant	the	read	request	by	T
• if	TS(T)	>	RT(X)

– set	RT(X)	=	TS(T)
– If	C(X)	is	false

• Delay	T	until	C(X)	becomes	true,	or	the	transaction	that	wrote	X	aborts
2. If	TS(T)	<	WT(X)
– write	is	not	realizable	 -- already	written	by	a	later	trans.
– Abort	(or,	Rollback)	T	 --i.e.	abort	and	restart	with	a	larger	

timestamp

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37



Request	for	a	write:	WT(X)
1. If	TS(T)	>=	RT(X)	and	TS(T)	>=	WT(X)

– last	written/read	by	a	previous	transaction	– OK
– Grant	the	write	request	by	T

• write	the	new	value	of	X
– Set	WT(X)	=	TS(T)
– Set	C(X)	=	false	 -- T	not	committed	yet

2. If	TS(T)	>=	RT(X)	 but	TS(T)<	WT(X)
– write	is	still	realizable	–-but	already	a	later	value	in	X
– If	C(X)	is	true

• previous	writer	of	X	has	committed
• simply	ignore	the	write	request	by	T
• but	allow	T	to	proceed	without	making	changes	to	the	database

– If	C(X)	is	false
• Delay	T until	C(X)	becomes	true,	or	the	transaction	that	wrote	X	aborts

• If	TS(T)	<	RT(X)
– write	is	not	realizable	 -- already	read	by	a	later	transaction
– Abort	(or,	Rollback)	T

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38



Thomas	Write	Rule
• If	TS(T)	<	WT(O)	and	a	write	request	comes

– violates	timestamp	order	of	T	w.r.t.	writer	of	O

Thomas	Write	Rule:
• But	we	can	safely	ignore	such	outdated	writes
• no	need	to	restart	T
• T’s	write	is	effectively	followed	by	another	write,	with	no	

intervening	reads
• Allows	some	serializable,	but	NOT conflict	serializable	schedules

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39



Timestamp	CC	and	Recoverability

• Timestamp	CC	with	“delays”	allows	only	recoverable	schedules:
– “Block”	readers T	(where	TS(T)	>	WT(O))	until	writer	of	O	commits
– a	full	example	from	GUW	next

• Similar	to	writers	holding	X	locks	until	commit,	but	still	not	quite	
2PL

Without “block or delay”, 
unrecoverable schedules 
are allowed:
• TS(T1) = 1
• TS(T2) = 2

T1	(1)				 T2	(2)
W(A); WT(A)=1

R(A):	RT(A)=2
W(B): WT(B)=2
Commit

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40



Example

• Three	transactions	T1 (TS	=	200),	T2 (TS	=	150),	T3 (TS	=	175)

• Three	objects	A,	B,	C
– initially	all	have	RT	=	WT	=	0,	C	=	1	(i.e.	true)

• Sequence	of	actions
– R1(B),	R2(A),	R3(C),	W1(B), W1(A),	W2(C),	W3(A)

• Q.	What	is	the	state	of	the	database	at	the	end	if	the	
timestamp-based	CC	protocol	is	followed
– i.e.	report	the	RT,	WT,	C

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41



Initial	condition	and	Steps

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 42

Step T1 T2 T3 A B C

200 150 175 RT	=	0,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B)

2 R2(A)

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)



After	Step	1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 43

Step T1 T2 T3 A B C

200 150 175 RT	=	0,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A)

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	B	is	<=	TS(T1)
C	=	1
Read	OK.



After	Step	2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 44

Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	A	is	<=	TS(T2)
C	=	1
Read	OK.



After	Step	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 45

Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	175,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	C	is	<=	TS(T3)
C	=	1
Read	OK.



After	Step	4

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46

Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 200
C	=	0

RT	=	175,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A)

6 W2(C)

7 W3(A)

WT	&	RT	of	B	is	<=	TS(T1)
Write	OK.



After	Step	5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47

Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)

7 W3(A)

RT	&	WT	of	A	<=	TS(T1)
Write	ok.



After	Step	6

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48

Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)
Abort

7 W3(A)

RT(C)	=	175	<	150	=	TS(T2)
Abort	T2



After	Step	7

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)
Abort

7 W3(A)
Delay

RT(A)	<=	TS(T3)	– write	ok
WT(A)	> TS(T3)	and	C(A)	=	0
Delay	T3



Multiversion CC

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50



A	fourth	approach	to	CC

• Multiversion CC
– another	way	of	using	timestamps
– ensures	that	a	transaction	never	has	to	be	restarted	(aborted)	to	read	

an	object
• unlike	timestamp-based	CC

• The	idea	is	to	make	several	copies	of	each	DB	object
– each	copy	of	each	object	has	a	write	timestamp

• Ti reads	the	most	recent	version	whose	timestamp	precedes	
TS(Ti)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51



Multiversion	Timestamp	CC

• Idea:		Let	writers	make	a	“new”	copy	while	
readers	use	an	appropriate	“old”	copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions	of
DB	objects)

VERSION
POOL
(Older	versions	that
may	be	useful	for	
some	active	readers.)

Readers are always allowed to proceed
– But may be “blocked“ until writer commits.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 52



Multiversion	CC	(Contd.)
• Each	version	of	an	object	has	
– its	writer’s	TS	as	its	WT,	and	
– the	timestamp	of	the	transaction	that	most	recently	read	this	
version	as	its	RT

• Versions	are	chained	backward
– we	can	discard	versions	that	are	“too	old	to	be	of	interest”

• Each	transaction	is	classified	as	Reader or	Writer.
– Writer	may write	some	object;	Reader	never	will
– Transaction	declares	whether	it	is	a	Reader	when	it	begins

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 53



Reader Transaction
• For	each	object	to	be	read:

– Finds	newest	version	with	WT	<	TS(T)
– Starts	with	current	version	in	the	main	segment	and	chains	

backward	through	earlier	versions
– Update	RT	if	necessary	(i.e.	if	TS(T)	>	RT,	then	RT	=	TS(T))

• Assuming	that	some	version	of	every	object	exists	from	the	
beginning	of	time,	Reader	transactions	are	never	restarted
– However,	might	block	until	writer	of	the	appropriate	version	

commits

T

old																							new
WTS	timeline

version	that	is	read

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 54



Writer Transaction
• To	read	an	object,	follows	reader	protocol
• To	write	an	object:

– must	make	sure	that	the	object	has	not	been	read	by	a	”later”	transaction
– Finds	newest	version	V s.t. WT(V)	<=	TS(T).	

• If	RT(V)	<=	TS(T)
– T	makes	a	copy	CV of	V,	with	a	pointer	to	V,	

with	WT(CV)	=	TS(T),	RT(CV)	=	TS(T)
– Write	is	buffered	until	T	commits;	other	transactions	can	see	TS	values	but	

can’t	read	version	CV
• Else

– reject	write

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 55



Example

• Four	transactions	T1 (TS	=	150),	T2 (TS	=	200),	T3 (TS	=	
175),	T4(TS	=	225)

• One	object	A
– Initial	version	is	A0

• Sequence	of	actions
– R1(A),	W1(A),	R2(A),	W2(A),	R3(A),	R4(A)

• Q.	What	is	the	state	of	the	database	at	the	end	if	the	
multiversion CC	protocol	is	followed

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 56



Initial	condition	and	Steps

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 57

Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,	
WT=0

1 R1(A)

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 existed	before	the	transactions	started



After	Step	1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 58

Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,	
WT=0

1 R1(A) Read
RT	=	150

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 is	the	newest	version	with	WT	<=	TS(T1)
Read	A0



After	Step	2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 59

Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150	
WT=0

RT=150
WT=150

1 R1(A) Read
RT	=	150

2 W1(A) Create
RT=150
WT=150

3 R2(A)
4 W2(A)
5 R3(A)
6 R4(A)

• A0 is	the	newest	version	with	WT	<=	TS(T1)
• RT(A0)	<=	TS(T1)
• Create	a	new	version	A150
• Set	its	WT,	RT	to	TS(T1)	=	150	(A150 named	accordingly)



After	Step	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 60

Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A)

5 R3(A)

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T2)
• Read	A150
• Update	RT



After	Step	4

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 61

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A)

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T2)
• RT(A150)	<=	TS(T2)
• Create	a	new	version	A200
• Set	its	WT,	RT	to	TS(T2)	=	200	(A200 named	accordingly)



After	Step	5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 62

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T3)
• Read	A150
• DO	NOT	Update	RT



After	Step	6

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 63

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=225
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A) Read
RT=225

• A200 is	the	newest	version	with	WT	<=	TS(T4)
• Read	A200
• Update	RT



Summary
• “Phantom	Problem”	and	why	serializability/2PL	fails
• New	requirements	and	mechanisms	for	multiple-granularity	

locks
• Note	the	key	ideas	for	three	timestamp-based	alternative	

approaches	(to	Lock-based	approaches)	to	CC
– Optimistic:	validation	tests
– Timestamp:	RT(O)	&	WT(O)	on	each	object	O
– Multiversion:	multiple	versions	of	each	object	O	with	different	WT	and	

RT

• Note:	a	new	action	(block	or	delay)	in	addition	to	commit	or	
abort

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 64


