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Announcements
• HW2	deadline	10/31	(Wed)	11:55	pm!

• Project	midterm	report	due	11/5	(Mon,	
extended)
– Keep	working	on	your	proposed	project	too
– Send	me	an	email	if	you	want	to	discuss	your	
project
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Announcements
• HW2	deadline	- Saturday,	10/21,	5	pm
– submit	on	time

• Project	midterm	report	deadline	- Wednesday,	
11/01,	11:55	pm
– Keep	working	on	your	proposed	project
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Reading	Material
• [RG]
– Chapter	17.5.1,	17.5.3,	17.6

• [GUW]
– Chapter	18.8,	18.9
– Today’s	examples	are	from	GUW	(lecture	slides	will	be	sufficient	for	this	class	

and	exams)
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Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan	and		Dr.	Gehrke.
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Today’s	topics

• Dynamic	databases	and	Phantom	problem	
(17.5.1)

• Multiple—granularity	locking	(17.5.3)
• Optimistic	concurrency	control	(17.6.1)
• Timestamp-based	concurrency	control	
(17.6.2)

• Multi-version	concurrency	control	(17.6.3)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5



Dynamic	Database	
and	Phantom	Problem
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Dynamic	Databases
• If	we	relax	the	assumption	that	the	DB	is	a	fixed	
collection	of	objects

• Then	even	Strict	2PL	will	not	assure	
serializability

• causes	”Phantom	Problem”	in	dynamic	
databases
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Example:	Phantom	Problem
• T1	wants	to	find	oldest	sailors	in	rating	levels	1	and	2

– Suppose	the	oldest	at	rating	1	has	age	71
– Suppose	the	oldest	at	rating	2	has	age	80
– Suppose	the	second	oldest	at	rating	2	has	age	63

• Another	transaction	T2	intervenes:
– Step	1:	T1	locks	all	pages	containing	sailor	records	with	rating	=	1,	and	finds	oldest	

sailor	(age	=	71)
– Step	2:	Next,	T2	inserts	a	new	sailor	onto	a	new	page	(rating	=	1,	age	=	96)	
– Step	3:	T2	locks	pages	with	rating	=	2,	deletes	oldest	sailor	with	rating	=	2	(age	=	80),	

commits,	releases	all	locks
– Step	4:	T1	now	locks	all	pages	with	rating	=	2,	and	finds	oldest	sailor	(age	=	63)

• No	consistent	DB	state	where	T1	is	“correct”
– T1	found	oldest	sailor	with	rating	=	1	before	modification	by	T2
– T1	found	oldest	sailor	with	rating	=	2	after modification	by	T2
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What	was	the	problem?
• Conflict	serializability guarantees	serializability only	if	
the	set	of	objects	is	fixed

• Problem:	
– T1	implicitly	assumed	that	it	has	locked	the	set	of	all	sailor	
records	with	rating	=	1

– Assumption	only	holds	if	no	sailor	records	are	added	while	
T1	is	executing

– Need	some	mechanism	to	enforce	this	assumption

• Index	locking	and	predicate	locking
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Index	Locking

• If	there	is	a	dense	index	on	the	rating	field	
using	Alt.	(2),	T1	should	lock	the	index	page	
containing	the	data	entries	with	rating	=	1
– If	there	are	no	records	with	rating	=	1,	T1	must	lock	

the	index	page	where	such	a	data	entry	would	be,	if	
it	existed

• If	there	is	no	suitable	index,	T1	must	lock	all	
pages,	and	lock	the	file/table	to	prevent	new	
pages	from	being	added
– to	ensure	that	no	new	records	with	rating	=	1	are	

added

r=1

Data

Index
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Predicate	Locking

• Grant	lock	on	all	records	that	satisfy	some	logical	
predicate,		e.g.	rating	=	1	or,	age	>	2*salary	

• Index	locking	is	a	special	case	and	an	efficient	
implementation	of	predicate	locking
– e.g.	Lock	on	the	index	pages	for	records	satisfying	rating	=	1

• The	general	predicate	locking	has	a	lot	of	locking	
overhead	and	so	not	commonly	used
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Multiple-granularity	Locking
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DB	Objects	may	contain	other	objects

• A	DB	contains	several	files
• A	file	is	a	collection	of	pages
• A	page	is	a	collection	of	records/tuples
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Carefully	choose	lock	granularity

• If	a	transaction	needs	most	of	the	pages
– set	a	lock	on	the	entire	file
– reduces	locking	overhead

• If	only	a	few	pages	are	needed
– lock	only	those	pages

• Need	to	efficiently	ensure	no	conflicts
– e.g.	a	page	should	not	be	locked	by	T1	if	T2	already	holds	the	lock	on	

the	file
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New	Lock	Modes	&	Protocol
• Allow	transactions	to	lock	at	each	level,	but	with	
a	special	protocol	using	new	“intention	locks”:

• Before	locking	an	item	(S	or	X),	transaction	must	set	
“intention	locks”	(IS	or	IX)	on	all	its	ancestors

• For	unlock,	go	from	specific	to	general	(i.e.,	bottom-
up)
• otherwise	conflicting	lock	possible	at	root

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö

Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Öother	tr.	cannot	have	IX	or	X

other	tr.	cannot	have	any	other	lock

conflicting	locks

Tuples

Tables

Pages

Database

contains
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SIX	mode	=	S	+	IX

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö

Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Öother	tr.	cannot	have	IX	or	X

other	tr.	cannot	have	any	other	lock

• Common	situation:	a	transaction		needs	to	read	
an	entire	file	and	modify	a	few	records
– S	lock
– IX	lock	(to	subsequently	lock)	
some	containing	objects	in	X	mode

• Obtain	a	SIX	lock
– conflict	with	either	S	or	IX

conflicting	locks
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Transaction	in	SQL
• SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED	[	;	]
• BEGIN	TRANSACTION
• <….	SQL	STATEMENTS>
• COMMIT	or	ROLLBACK

• Four	isolation	levels	:	performance	and	serializability
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Dirty	Read Unrepeatable	
Read

Phantom

READ	UNCOMMITTED Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE	READS No No Maybe

SERIALIZABLE No No No



Approaches	to	CC	
other	than	locking
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Approaches	to	
Concurrency	Control	(CC)

• Lock-based	CC
– (so	far)

• Optimistic	CC
– today

• Time-stamp-based	CC
– today

• Multi-version	CC
– today
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Timestamp

• Each	transaction	gets	a	unique	timestamp

• e.g.	
– system’s	clock	value	when	it	is	issued	by	the	
scheduler	(assume	one	transactions	issued	on	one	
tick	of	the	clock)

– or	a	unique	number	given	by	a	counter	
(incremented	after	each	transaction)
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Locking	is	a	“pessimistic	or	
conservative”	approach	to	CC

• Locking	is	a	conservative	approach	in	which	conflicts	are	
prevented

• Either	uses	“blocking”	(delay)	or	abort
– note	the	several	usages	of	a	“block”!

• Disadvantages	of	locking:
– Lock	management	overhead
– Deadlock	detection/resolution
– Lock	contention	for	heavily	used	objects

• If	only	light	contention	for	data	objects,	still	the	overhead	
of	following	a	locking	protocol	is	paid
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Optimistic	CC
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A	second	approach	to	CC:	
Optimistic	CC	(Kung-Robinson)

• If	conflicts	are	rare,	we	might	be	able	to	gain	
concurrency	by	not	locking,	and	instead	checking	
for	conflicts	before	transactions	commit

• Premise:	
– most	transactions	do	not	conflict	with	other	
transactions

– be	as	permissive	as	possible	in	allowing	transactions	
to	execute
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Kung-Robinson	Model
• Transactions	have	three	phases:

1. READ:		Read	from	the	database,	but	make	changes	to	”private	copies”	of	
objects	(assume	private	workspace)

2. VALIDATE:		When	decide	to	commit,	also	check	for	conflicts	with	
concurrently	executing	transactions
• if	a	possible	conflict,	abort,	clear	private	workspace,	restart

3. WRITE: If	no	conflict,	make	local	copies	of	changes	public	(copy	them	into	
the	database)

ROOT

old

new

modified
objects
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Validation
• Test	conditions	that	are	sufficient to	ensure	that	no	conflict	

occurred

• Each	transaction	Ti is	assigned	a	numeric	id
– Use	a	timestamp	TS(Ti)

• Transaction	ids	assigned	at	end	of	READ	phase,	just	before	
validation	begins

• Validation	checks	whether	the	timestamp	ordering	has	an	
equivalent	serial	order
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Notation

• TS(Ti): Transaction	id	or	timestamp	of	Ti
BEFORE	the	validation	step	starts

• ReadSet(Ti): Set	of	objects	read	by	transaction	Ti

• WriteSet(Ti): Set	of	objects	modified	by	transaction	Ti

next,	three	tests	used	for	validation
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Validation	Tests
• To	validate	Tj

– for	each	committed transactions	Ti
– such	that	TS(Ti)	<	TS(Tj)
– one	of	the	three	validation	tests	(TEST	1,	TEST	2,	TEST	3)	must	be	

satisfied
– (see	the	tests	next)

• Ensures	that	Tj-s	modifications	are	not	visible	to	the	previous	
transaction	Ti

• Check	yourself:	No	RW,	WR,	WW	conflicts	if	any	of	these	tests	
satisfy
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Test	1

• For	all	i and	j	such	that	TS(Ti)	<	TS(Tj),	check	that	
Ti completes	(all	three	phases)	before	Tj begins

Ti
TjR V W

R V W

• Tj sees	some	changes	by	Ti
• But	they	execute	completely	in	serial	order
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Test	2
• For	all	i and	j	such	that	TS(Ti)	<	TS(Tj),	check	that:
– Ti completes	before	Tj begins	its	Write	phase	+
– WriteSet(Ti)	∩	ReadSet(Tj)		is	empty

Ti

Tj
R V W

R V W
Does	Tj read	dirty	data?	Does	Ti overwrite	Tj’s writes?

• Allows	Tj to	read	objects	while	Ti is	still	modifying	objects
• But	no	conflict	because	Tj does	not	read	any	object	modified	by	Ti
• Tj can	overwrite	some	writes	by	Ti (ok	since	Tj starts	later)
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Test	3
• For	all	i and	j	such	that	Ti <	Tj,	check	that:

– Ti completes	Read	phase	before	Tj completes	its	Read	+
– WriteSet(Ti)	∩	ReadSet(Tj)		is	empty +
– WriteSet(Ti)	∩	WriteSet(Tj)		is	empty

Ti

Tj
R V W

R V W

i.e.	Ti does	not
write	any	object
that	Tj reads	or	writes

Does	Tj read	dirty	data?	Does	Ti overwrite	Tj’s writes?

• Allows	Ti and	Tj write	objects	at	the	same	time
• More	overlap	than	Test	2
• But	the	sets	of	objects	written	cannot	overlap	
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Comments	on	Serial	Validation
• List	of	objects	written/read	by	each	transaction	has	to	be	

maintained
• While	one	transaction	is	validating,	no	transaction	can	commit

– otherwise	some	conflicts	may	be	missed

• Assignment	of	transaction	id,	validation,	and	the	Write	phase	
are	inside	a	critical	section
– i.e.,	Nothing	else	goes	on	concurrently
– If	Write	phase	is	long,	major	drawback

• The	write	phase	of	a	validated	transactions	must	be	
completed	before	other	tr.	s	are	validated	
– i.e.	changes	should	be	reflected	to	the	DB	from	private	workspace

• Optimization	for	Read-only	transactions:
– Don’t	need	critical	section	(because	there	is	no	Write	phase)	
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Overheads	in	Optimistic	CC
• Must	record	read/write	activity	in	ReadSet	and	WriteSet	per	

transaction
– Must	create	and	destroy	these	sets	as	needed

• Must	check	for	conflicts	during	validation,	and	must	make	
validated	writes	``global’’
– Critical	section	can	reduce	concurrency

• Optimistic	CC	restarts	transactions	that	fail	validation
– Work	done	so	far	is	wasted;	requires	clean-up
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Optimistic	CC	vs	locking

• If	there	are	few	conflicts	and	validation	is	
efficient
– optimistic	CC	is	better	than	locking

• If	many	conflicts
– cost	of	repeatedly	restarting	transactions	hurts	
performance	significantly
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Timestamp-based	CC
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A	third	approach	to	CC
So	far…
• Lock-based	CC

– conflicting	actions	of	different	transactions	are	ordered	by	the	order	in	
which	locks	are	obtained

– locking	protocols	ensure	serializability

• Optimistic	CC
– A	timestamp	ordering	is	imposed	on	transactions
– Validation	checks	that	all	conflicting	transactions	occurred	in	the	same	order

• Next:	Timestamp-based	CC
– another	use	of	timestamp
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Timestamp	CC
Main	Idea:		
• Give	each	object	O

– a	read-timestamp	RT(O),	and	
– a	write-timestamp	WT(O)

• RG	uses	RTS/WTS,	GUW	uses	RT/WT,	either	of	these	is	fine

• Give	each	transaction	T
– a	timestamp	TS(T)	when	it	begins

• If	
– action	ai of	Ti conflicts	with	action	aj of	Tj,	
– and	TS(Ti)	<	TS(Tj)

• then	
– ai must	occur	before	aj

• Otherwise,	abort	and	restart	violating	transaction
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Request	for	a	read:	RT(X)

1. If	TS(T)	>=	WT(X)
– last	written	by	a	previous	transaction	–- OK	(i.e.	“physically	

realizable”)
– If	C(X)	is	true	–- check	if	previous	transaction	has	committed

• Grant	the	read	request	by	T
• if	TS(T)	>	RT(X)

– set	RT(X)	=	TS(T)
– If	C(X)	is	false

• Delay	T	until	C(X)	becomes	true,	or	the	transaction	that	wrote	X	aborts
2. If	TS(T)	<	WT(X)
– write	is	not	realizable	 -- already	written	by	a	later	trans.
– Abort	(or,	Rollback)	T	 --i.e.	abort	and	restart	with	a	larger	

timestamp
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Request	for	a	write:	WT(X)
1. If	TS(T)	>=	RT(X)	and	TS(T)	>=	WT(X)

– last	written/read	by	a	previous	transaction	– OK
– Grant	the	write	request	by	T

• write	the	new	value	of	X
– Set	WT(X)	=	TS(T)
– Set	C(X)	=	false	 -- T	not	committed	yet

2. If	TS(T)	>=	RT(X)	 but	TS(T)<	WT(X)
– write	is	still	realizable	–-but	already	a	later	value	in	X
– If	C(X)	is	true

• previous	writer	of	X	has	committed
• simply	ignore	the	write	request	by	T
• but	allow	T	to	proceed	without	making	changes	to	the	database

– If	C(X)	is	false
• Delay	T until	C(X)	becomes	true,	or	the	transaction	that	wrote	X	aborts

• If	TS(T)	<	RT(X)
– write	is	not	realizable	 -- already	read	by	a	later	transaction
– Abort	(or,	Rollback)	T
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Thomas	Write	Rule
• If	TS(T)	<	WT(O)	and	a	write	request	comes

– violates	timestamp	order	of	T	w.r.t.	writer	of	O

Thomas	Write	Rule:
• But	we	can	safely	ignore	such	outdated	writes
• no	need	to	restart	T
• T’s	write	is	effectively	followed	by	another	write,	with	no	

intervening	reads
• Allows	some	serializable,	but	NOT conflict	serializable	schedules
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Timestamp	CC	and	Recoverability

• Timestamp	CC	with	“delays”	allows	only	recoverable	schedules:
– “Block”	readers T	(where	TS(T)	>	WT(O))	until	writer	of	O	commits
– a	full	example	from	GUW	next

• Similar	to	writers	holding	X	locks	until	commit,	but	still	not	quite	
2PL

Without “block or delay”, 
unrecoverable schedules 
are allowed:
• TS(T1) = 1
• TS(T2) = 2

T1	(1)				 T2	(2)
W(A); WT(A)=1

R(A):	RT(A)=2
W(B): WT(B)=2
Commit
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Example

• Three	transactions	T1 (TS	=	200),	T2 (TS	=	150),	T3 (TS	=	175)

• Three	objects	A,	B,	C
– initially	all	have	RT	=	WT	=	0,	C	=	1	(i.e.	true)

• Sequence	of	actions
– R1(B),	R2(A),	R3(C),	W1(B), W1(A),	W2(C),	W3(A)

• Q.	What	is	the	state	of	the	database	at	the	end	if	the	
timestamp-based	CC	protocol	is	followed
– i.e.	report	the	RT,	WT,	C
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Initial	condition	and	Steps
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Step T1 T2 T3 A B C

200 150 175 RT	=	0,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B)

2 R2(A)

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)



After	Step	1
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Step T1 T2 T3 A B C

200 150 175 RT	=	0,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A)

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	B	is	<=	TS(T1)
C	=	1
Read	OK.



After	Step	2
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Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	0,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C)

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	A	is	<=	TS(T2)
C	=	1
Read	OK.



After	Step	3
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Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 0,	
C	=	1

RT	=	175,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B)

5 W1(A)

6 W2(C)

7 W3(A)

WT	of	C	is	<=	TS(T3)
C	=	1
Read	OK.



After	Step	4
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Step T1 T2 T3 A B C

200 150 175 RT	=	150,	
WT	= 0,	
C	=	1

RT	=	200,	
WT	= 200
C	=	0

RT	=	175,	
WT	= 0,	
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A)

6 W2(C)

7 W3(A)

WT	&	RT	of	B	is	<=	TS(T1)
Write	OK.



After	Step	5
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Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)

7 W3(A)

RT	&	WT	of	A	<=	TS(T1)
Write	ok.



After	Step	6
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Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)
Abort

7 W3(A)

RT(C)	=	175	<	150	=	TS(T2)
Abort	T2



After	Step	7
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Step T1 T2 T3 A B C

200 150 175 RT	=	150	
WT	= 200
C	=	0

RT	=	200	
WT	= 200

C	=	0

RT	=	175	
WT	= 0
C	=	1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(C) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(C)
Abort

7 W3(A)
Delay

RT(A)	<=	TS(T3)	– write	ok
WT(A)	> TS(T3)	and	C(A)	=	0
Delay	T3



Multiversion CC
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A	fourth	approach	to	CC

• Multiversion CC
– another	way	of	using	timestamps
– ensures	that	a	transaction	never	has	to	be	restarted	(aborted)	to	read	

an	object
• unlike	timestamp-based	CC

• The	idea	is	to	make	several	copies	of	each	DB	object
– each	copy	of	each	object	has	a	write	timestamp

• Ti reads	the	most	recent	version	whose	timestamp	precedes	
TS(Ti)
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Multiversion	Timestamp	CC

• Idea:		Let	writers	make	a	“new”	copy	while	
readers	use	an	appropriate	“old”	copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions	of
DB	objects)

VERSION
POOL
(Older	versions	that
may	be	useful	for	
some	active	readers.)

Readers are always allowed to proceed
– But may be “blocked“ until writer commits.
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Multiversion	CC	(Contd.)
• Each	version	of	an	object	has	
– its	writer’s	TS	as	its	WT,	and	
– the	timestamp	of	the	transaction	that	most	recently	read	this	
version	as	its	RT

• Versions	are	chained	backward
– we	can	discard	versions	that	are	“too	old	to	be	of	interest”

• Each	transaction	is	classified	as	Reader or	Writer.
– Writer	may write	some	object;	Reader	never	will
– Transaction	declares	whether	it	is	a	Reader	when	it	begins
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Reader Transaction
• For	each	object	to	be	read:

– Finds	newest	version	with	WT	<	TS(T)
– Starts	with	current	version	in	the	main	segment	and	chains	

backward	through	earlier	versions
– Update	RT	if	necessary	(i.e.	if	TS(T)	>	RT,	then	RT	=	TS(T))

• Assuming	that	some	version	of	every	object	exists	from	the	
beginning	of	time,	Reader	transactions	are	never	restarted
– However,	might	block	until	writer	of	the	appropriate	version	

commits

T

old																							new
WTS	timeline

version	that	is	read
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Writer Transaction
• To	read	an	object,	follows	reader	protocol
• To	write	an	object:

– must	make	sure	that	the	object	has	not	been	read	by	a	”later”	transaction
– Finds	newest	version	V s.t. WT(V)	<=	TS(T).	

• If	RT(V)	<=	TS(T)
– T	makes	a	copy	CV of	V,	with	a	pointer	to	V,	

with	WT(CV)	=	TS(T),	RT(CV)	=	TS(T)
– Write	is	buffered	until	T	commits;	other	transactions	can	see	TS	values	but	

can’t	read	version	CV
• Else

– reject	write
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Example

• Four	transactions	T1 (TS	=	150),	T2 (TS	=	200),	T3 (TS	=	
175),	T4(TS	=	225)

• One	object	A
– Initial	version	is	A0

• Sequence	of	actions
– R1(A),	W1(A),	R2(A),	W2(A),	R3(A),	R4(A)

• Q.	What	is	the	state	of	the	database	at	the	end	if	the	
multiversion CC	protocol	is	followed
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Initial	condition	and	Steps
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Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,	
WT=0

1 R1(A)

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 existed	before	the	transactions	started



After	Step	1
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Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,	
WT=0

1 R1(A) Read
RT	=	150

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 is	the	newest	version	with	WT	<=	TS(T1)
Read	A0



After	Step	2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 59

Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150	
WT=0

RT=150
WT=150

1 R1(A) Read
RT	=	150

2 W1(A) Create
RT=150
WT=150

3 R2(A)
4 W2(A)
5 R3(A)
6 R4(A)

• A0 is	the	newest	version	with	WT	<=	TS(T1)
• RT(A0)	<=	TS(T1)
• Create	a	new	version	A150
• Set	its	WT,	RT	to	TS(T1)	=	150	(A150 named	accordingly)



After	Step	3
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Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A)

5 R3(A)

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T2)
• Read	A150
• Update	RT



After	Step	4
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Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A)

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T2)
• RT(A150)	<=	TS(T2)
• Create	a	new	version	A200
• Set	its	WT,	RT	to	TS(T2)	=	200	(A200 named	accordingly)



After	Step	5
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Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A)

• A150 is	the	newest	version	with	WT	<=	TS(T3)
• Read	A150
• DO	NOT	Update	RT



After	Step	6
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Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150	
WT=0

RT=200
WT=150

RT=225
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A) Read
RT=225

• A200 is	the	newest	version	with	WT	<=	TS(T4)
• Read	A200
• Update	RT



Summary
• “Phantom	Problem”	and	why	serializability/2PL	fails
• New	requirements	and	mechanisms	for	multiple-granularity	

locks
• Note	the	key	ideas	for	three	timestamp-based	alternative	

approaches	(to	Lock-based	approaches)	to	CC
– Optimistic:	validation	tests
– Timestamp:	RT(O)	&	WT(O)	on	each	object	O
– Multiversion:	multiple	versions	of	each	object	O	with	different	WT	and	

RT

• Note:	a	new	action	(block	or	delay)	in	addition	to	commit	or	
abort
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