
CompSci 516
Database	Systems

Lecture	16
Transactions	–

Recovery

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Announcements
• Keep	working	on	your	project

– Midterm	report	due	on	Monday,	11/05

• HW2	deadline	extended
– Friday	Nov	2,	5PM
– No	further	extensions	– finish	early!

2Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Reading	Material
• [GUW]

– Chapter	17.2.1-17.2.4	(UNDO)
– Chapter	17.3.1-17.3.4	(REDO	– next	lecture)
– Lecture	slides	will	be	sufficient	for	exams

3

Acknowledgement:	
A	few	of	the	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan	and		Dr.	Gehrke.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Last	Lecture
• Dynamic	Database	+	Phantom	Problem
• Multiple-granularity	locks
• Alternatives	timestamp-based	(not	lock-
based)	approaches	to	CC
– Optimistic:	validation	tests
– Timestamp:	RT(O)	&	WT(O)	on	each	object	O
– Multiversion:	multiple	versions	of	each	object	O	
with	different	WT	and	RT

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 4



Today

Recovery
• STEAL/	NO	STEAL
• FORCE/NO	FORCE
• UNDO	log
• REDO	log

– to	be	continued	in	the	next	1-2	lecture

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5



Transaction	Recovery
and
Logs

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6



Review:	The	ACID	properties

• A tomicity:	 All	actions	in	the	transaction	happen,	or	none	
happen.

• C onsistency:	 If	each	transaction	is	consistent,	and	the	DB	starts	
consistent,	it	ends	up	consistent.

• I solation:	 Execution	of	one	transaction	is	isolated	from	that	of	
other	transactions.

• D	urability:	 If	a	transaction	commits,	its	effects	persist.

• Which	property	did	we	cover	in	CC?

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7



Review:	The	ACID	properties

• A tomicity:	 All	actions	in	the	transaction	happen,	or	none	
happen.

• C onsistency:	 If	each	transaction	is	consistent,	and	the	DB	starts	
consistent,	it	ends	up	consistent.

• I solation:	 Execution	of	one	transaction	is	isolated	from	that	of	
other	transactions.

• D	urability:	 If	a	transaction	commits,	its	effects	persist.

• Which	property	did	we	cover	in	CC?	:	Isolation

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8



Review:	The	ACID	properties

• A tomicity:	 All	actions	in	the	transaction	happen,	or	none	
happen.

• C onsistency:	 If	each	transaction	is	consistent,	and	the	DB	starts	
consistent,	it	ends	up	consistent.

• I solation:	 Execution	of	one	transaction	is	isolated	from	that	of	
other	transactions.

• D	urability:	 If	a	transaction	commits,	its	effects	persist.

• Next:	The	Recovery	Manager	guarantees	Atomicity	&	Durability.
• Recall	that	Consistency	is	programmer’s	responsibility

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9



Motivation:	A	&	D
• Atomicity:	

– Transactions	may	abort	(“Rollback”).

• Durability:
– What	if	DBMS	stops	running?		(power	failure/crash/error/fire-

flood	etc.)

crash!
❖ Desired Behavior after system restarts:

– T1, T2 & T3 should be durable.
– T4 & T5 should be aborted (effects 

not seen).
T1
T2
T3
T4
T5

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10



Recovery:	A	&	D

• Atomicity
– by	”undo”ing actions	of	“aborted	transactions”

• Durability
– by	making	sure	that	all	actions	of	committed	
transactions	survive	crashes	and	system	failure

– i.e.	by	“redo”-ing actions	of	“committed	
transactions”

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11



DB	Architecture	for	Transactions

• Tr.	mgr.	issues	signals	
– to	log	mgr.	to	store	log	records
– to	buffer	mgr.	about	when	it	should	copy	buffer	to	disk
– to	query	processor	to	execute	queries/operations	that	comprise	the	transaction

• Log	mgr.
– maintains	log,	deals	with	buffer	mgr.	since	first	log	appears	in	buffer	then	is	written	to	disk

• Recovery	mgr.
– If	there	is	a	crash,	it	is	activated
– examines	the	log	and	repairs	data	if	necessary	

• Note:	access	to	the	disk	is	through	the	buffer	mgr.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12

Data

Log

Buffer	
manager

Recovery	
manager

Query	
Processor

Transaction	
manager Log	manager



Assumptions

• Concurrency	control	is	in	effect

• Updates	are	happening	“in	place”.
– i.e.	data	is	overwritten	on	(deleted	from)	the	disk.

• Simple	schemes	to	guarantee	Atomicity	&	
Durability	(next):
– NO	STEAL
– FORCE

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13



Handling	the	Buffer	Pool
• Force every	write	to	
disk?
– Poor	response	time
– But	provides	durability

• Steal buffer-pool	
frames	from	
uncommitted	
transactions?
– If	not,	poor	throughput
– If	so,	how	can	we	
ensure	atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14



What	if	we	do	“Steal”	and	“NO	Force”
• STEAL (why	enforcing	Atomicity	is	hard)

– To	steal	frame	F:		Current	page	in	F	(say	P)	is	written	to	
disk;	some	transaction	holds	lock	on	P

• What	if	the	transaction with	the	lock	on	P	aborts?
• Must	remember	the	old	value	of	P	at	steal	time	(to	support	
UNDOing the	write	to	page	P)

• NO	FORCE		(why	enforcing	Durability	is	hard)
– What	if	system	crashes	before	a	modified	page	is	
written	to	disk?

– Write	as	little	as	possible,	in	a	convenient	place,	at	
commit	time,	to	support	REDOing modifications.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15



Basic	Idea:	Logging
• Record	REDO	and	UNDO	information,	for	
every	update,	in	a	log
– Sequential	writes	to	log	(put	it	on	a	separate	
disk)

– Minimal	info	(diff)	written	to	log,	so	multiple	
updates	fit	in	a	single	log	page

• Log:	An	ordered	list	of	REDO/UNDO	actions
– Log	record	may	contain:	

<Tr.ID,	pageID,	offset,	length,	old	data,	new	data>	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16



Different	types	of	logs

• UNDO
• REDO
• UNDO/REDO

• ARIES
– an	UNDO/REDO	log	implementation	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17

GUW	17.2,	17.3,	17.4
(Lecture	material	will	be	sufficient	for
HWs	and	Exams)

Next	lecture,	[RG	]18,	
and	a	research	paper	(optional)



Recall:	Log	Records

• A	file	opened	for	appending	only

• Log	blocks	are	created	and	updated	in	the	
main	memory	first
– then	written	to	disk

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18



UNDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19



UNDO	logging

• Make	repair	to	the	database	by	undoing the	
effect	of	transactions	that	have	not	finished
– i.e.	uncommitted	transactions	before	a	crash	or	
aborted	transactions	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20



Types	of	UNDO	log	records
• <START	T>:	 transaction	T	has	begun
• <COMMIT		T>:	T	has	completed	successfully,	no	more	changes	will	

be	made
– Note	that	seeing	<COMMIT	T>	does	not	automatically	ensure	that	changes	

have	been	written	to	disk,	has	to	be	enforced	by	log	manager

• <ABORT	T>:	transaction	T	could	not	complete	successfully
– job	of	the	transaction	mgr to	ensure	that	changes	by	T	never	appear	on	disk	

or	are	cancelled	

• <T,	X,	v>:	update	record	for	UNDO	log
– T	has	changed	object	X,	and	its	former	value	was	v
– This	change	normally	happened	in	memory	after	a	WRITE,	not	after	

OUTPUT	to	disk
– NOTE:	we	only	record	the	old	value,	not	the	new	value
– since	UNDO	log,	while	undoing,	replace	with	old	value	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21



UNDO	logging	rules

1. (U1)	If	T	modifies	X,	then	log	record	<T,	X,	v>	
must	be	written	to	disk	before the	new	value	of	
X	is	written	to	disk

– so	that	the	update	can	be	undone	using	v	if	there	is	a	
crash

2. (U2)	If	T	commits,	<COMMIT	T>	must	be	written	
to	disk after	all	database	elements	changed	by	T	
are	written	to	disk

– but	as	soon	thereafter	as	possible

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22



Order	of	write	to	disk	for	UNDO	log

• Summarizing	two	rules:
1. First,	the	log	records	indicating	changed	DB	

elements should	be	written

2. Second,	the	changed	values	of	the	DB	elements	
should	be	written

3. Finally,	the	COMMIT	log	record	should	be	written

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

for	each	element,
not	as	a	group



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

24

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

=	t



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

25

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

26

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

27

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

28

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

29

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

30

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

31

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

32

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

33

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

34

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

35

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

36

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Recovery	using
UNDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37

• first	simple (look	at	entire	log)
• then	“checkpointing”	(no	need	to	look	at	entire	log)



Recovery	with	UNDO	log
• Scan	from	the	end

• If	<COMMIT	T>	is	found	in	log
– all	changes	by	T	have	been	written	to	disk	– OK

• <START	T>	found	but	no	<COMMIT	T>
– some	changes	might	be	written,	some	not
– Changes	by	T	on	disk	have	to	be	UNDONE

• Recall	rule	1:	
– “If	T	modifies	X,	then	log	record	<T,	X,	v>	must	be	written	to	disk	before

the	new	value	of	X	is	written	to	disk”
– v	was	previous value	of	X
– For	each	such	change	on	disk,	there	will	be	a	log	record	on	disk	as	well
– Reset	value	of	X	to	v	in	recovery

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38

UNDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>



Recovery	with	UNDO	log
• Travel	backward

– scan	the	log	from	the	end	toward	the	start
• Remember	whether	you	have	seen	<COMMIT	T>	or	<ABORT	T>	for	all	T

• Suppose	<T,	X,	v>	is	encountered

1. If	<COMMIT	T>	has	been	seen,	do	nothing
– nothing	to	undo,	new	value	already	written

2. Otherwise,	
a) T	is	incomplete	or	aborted
b) Change	the	value	of	X	to	v

3. If	<ABORT	T>	not	found
a) write	<ABORT	T>
b) flush	the	log
c) resume	normal	operation

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39

UNDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

40

initially	A	=	8,	B	=	8

• Crash	after final	flush
• <COMMIT	T>	already	on	disks
• All	log	records	by	T	are	ignored	by	the	recovery	manager

Crash	example	1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

41

initially	A	=	8,	B	=	8

• Crash	before final	flush
• <COMMIT	T>	not	on	disk																	
• Go	backward,	first	<T,	B,	8>	found,	set	B	=	8	on	disk

Crash	example	2,	Step	1

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

42

initially	A	=	8,	B	=	8

• Crash	before final	flush
• <COMMIT	T>	not	on	disk																	
• Go	backward,	first	<T,	B,	8>	found,	set	B	=	8	on	disk
• Then	<T,	A,	8>	is	found,	set	A	=	8	on	disk

Crash	example	2,	Step	2

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

43

initially	A	=	8,	B	=	8

• Crash	before final	flush
• <COMMIT	T>	not	on	disk																	
• Go	backward,	first	<T,	B,	8>	found,	set	B	=	8	on	disk
• Then	<T,	A,	8>	is	found,	set	A	=	8	on	disk
• <START	T>	found.	Nothing	else	can	be	found	in	the	log	for	T.	Write	<ABORT	T>

Crash	example	2,	Step	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

44

initially	A	=	8,	B	=	8

• Crash	before FIRST	flush
• <T,	A,	8>,	<T,	B,	8>,	<COMMIT	T>	not	on	disk
• By	rule	U1,	A	and	B	not	changed	on	disk	- do	nothing

Crash	example	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG



Action T Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

45

initially	A	=	8,	B	=	8

• Crash	before FIRST	flush
• <T,	A,	8>,	<T,	B,	8>,	<COMMIT	T>	not	on	disk
• By	rule	U1,	A	and	B	not	changed	on	disk	- do	nothing

Crash	example	3

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

EXAMPLE:	UNDO	LOG

Does	this	UNDO	method	work
if	T	changes	A	twice?
A	=	16
A	=	24?



Checkpointing for	UNDO	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46



Checkpointing Motivation
• So	far,	recovery	requires	every	log	record	to	be	examined

• If	we	have	seen	<COMMIT	T>,	no	need	to	examine	log	
records	of	T	
– all	changes	already	on	disk

• Still,	we	may	not	be	able	to	truncate	log	after	one	
transaction	committed
– log	records	of	other	active	transactions	might	be	lost
– always	need	to	scan	until	the	start	of	the	log

• Explicitly	checkpoint	the	log	periodically
– We	can	stop	scanning	the	log	after	certain	points

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47



Checkpointing process

1. Stop	accepting	new	transactions
2. Wait	until	all	currently	active	transactions	commit	or	abort,	

and	have	written	<COMMIT>	or	<ABORT>	log	record
3. Flush	log	to	disk
4. Write	a	checkpointing log	record	<CKPT>,	flush	the	log	again
5. Resume	accepting	transactions

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48



Recovery	using	Checkpointing
for	UNDO	log

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<T2,	C,	15>

<T1,	D,	20>

<COMMIT T1>

<COMMIT	T2>

<CKPT>

<START	T3>

<T3,	E,	25>

<T3,	F,	30>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49

• Do	not	accept	new	transaction
• Finish	T1,	T2

– they	committed

• Then	write	<CKPT>	on	log
• Then	can	accept	new	transaction

– Here	T3

suppose,
want
to	ckpt here



Recovery	using	Checkpointing
for	UNDO	log

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<T2,	C,	15>

<T1,	D,	20>

<COMMIT T1>

<COMMIT	T2>

<CKPT>

<START	T3>

<T3,	E,	25>

<T3,	F,	30>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50

CRASH

• T3	is	the	only	incomplete	transaction
– Restore	F	to	30
– Restore	E	to	25
– in	backward	direction

• When	we	reach	<CKPT>,	we	know	that	no	
need	to	examine	prior	log	records

• Restoration	of	the	database	is	complete
– CKPT	is	the	earliest	(last)	log	record	read	by	the	

recovery	manager

• Drawback:	no	transaction	can	be	accepted	
until	all	the	active	ones	commit	and	CKPT	
completes

suppose,
want
to	ckpt here



Nonquiescent Checkpointing

• Avoids	stalling	the	system	and	continues	accepting	new	
transactions
– “quiescent”	=	in	a	state	or	period	of	inactivity	or	dormancy

1. Write	<START	CKPT(T1,	…,	Tk)>	and	flush	the	log
– T1,	…	Tk are	active	transactions	(have	not	committed	and	have	not	

written	their	changes	to	disk)

2. Checkpointing continues	until	all	of	T1,	..	Tk aborts	or	commits
– but	do	not	prohibit	other	new	transactions	to	start

3. When	all	of	T1,	…,	Tk have	completed,	write	<END	CKPT>	and	
flush	the	log	again

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51



Example:	Nonquiescent Checkpointing
for	UNDO	logLog	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<START	CKPT(T1,	T2)>

<T2,	C,	15>

<START	T3>

<T1,	D,	20>

<COMMIT T1>

<T3, E,	25>

<COMMIT	T2>

<END	CKPT>

<T3,	F,	30>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 52

• <START	CKPT(T1,	T2)>
– since	T1,	T2	are	only	active	transactions	at	

that	point
– <END	CKPT>	after	both	committed

• <START	T3>	during	checkpointing

suppose,
want
to	ckpt here



Recovery	with	Nonquiescent
Checkpointing for	UNDO	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 53

• Scan	log	from	the	end	(as	before)
– find	all	incomplete	transaction	as	we	go	
– restore	values	for	those	transactions	(undo)

• If	<END	CKPT>	is	met	first
– all	incomplete	transactions	started	after	<START	CKPT	….>
– scan	until	that	<START	CKPT…>	- can	stop	at	that	point
– can	delete	log	records	prior	to	<START	CKPT..>	once	<END	

CKPT>	is	written	to	disk

• If	<START	CKPT	(T1,..,Tk)>	is	met	first
– crash	occurred	during	the	checkpoint
– incomplete	transactions	=		

• either	started	after	<START	CKPT..>	 (HERE	T3)
• or	among	T1,	…,	Tk (HERE	T1,	T2)

– Scan	backward	
– until	the	earliest	<START	tr>	

of	all	these	transactions	tr

UNDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<START	CKPT(T1,	T2)>

<T2,	C,	15>

<START	T3>

<T1,	D,	20>

<COMMIT T1>

<T3, E,	25>

<COMMIT	T2>

<END	CKPT>

<T3,	F,	30>



Recovery	with	Nonquiescent
Checkpointing for	UNDO	logLog	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<START	CKPT(T1,	T2)>

<T2,	C,	15>

<START	T3>

<T1,	D,	20>

<COMMIT T1>

<T3, E,	25>

<COMMIT	T2>

<END	CKPT>

<T3,	F,	30>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 54

CRASH

• First	<T3,	F,	30>	found
– restore	F	to	30	 (undo	change	by	T3)

• <END	CKPT>	found
– All	incomplete	transactions	started	after	

corresponding	<START	CKPT..>

• <T3,	E,	25>	found
– restore	E	to	25	 (undo	change	by	T3)

• No	other	records	to	restore	until	
<START	CKPT…>

• Stop	there	– no	further	changes



Recovery	with	Nonquiescent
Checkpointing for	UNDO	logLog	records

<START	T1>

<T1,	A,	5>

<START	T2>

<T2,	B,	10>

<START	CKPT(T1,	T2)>

<T2,	C,	15>

<START	T3>

<T1,	D,	20>

<COMMIT T1>

<T3, E,	25>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 55

CRASH

• Scan	backward
– no	<END	CKPT>	found
– but	<START	CKPT(T1,	T2)>	found
– also	<COMMIT	T1>	found

• T3	and	T2	incomplete	transactions
– T1	already	committed

• Scan	until	the	earliest	of	<START	T2>	and	
<START	T3>
– here	<START	T2>

• Along	the	way	backward	
– restore	E	to	25	(undo	change	by	T3)
– restore	C	to	15	(undo	change	by	T2)
– restore	B	to	10	(undo	change	by	T2)
– in	this	order
– then	stop	at	<START	T2>



Problems	with	UNDO	logging

• We	cannot	commit	T	unless	all	its	changes	
appear	on	disk

• Sometimes	disk	I/Os can	be	saved	if	the	
changes	can	stay	in	main	memory	for	a	while
– as	long	as	there	is	a	log	to	fix	things	in	a	crash

• Idea:	REDO	logging	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 56

UNDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>



REDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 57



Review:	UNDO	Log

• STEAL
– to	be	able	to	steal	modified	pages	by	a	running	transaction
– may	have	to	UNDO	for	uncommitted	transactions

• NO	FORCE
– not	to	force	every	write	of	running	transaction	to	disk
– may	have		to	REDO	for	committed	transactions

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 58

Considered	by	UNDO	log
UNDO	uncommitted	transactions
Ignore	committed	transactions

Considered	by	REDO	log
REDO	committed	transactions
Ignore	uncommitted	transactions



UNDO	vs.	REDO

UNDO REDO

cancels	(UNDO)	the	effect	of	
incomplete	transactions

ignores	incomplete	transactions

ignores	committed	ones repeats	(REDO)	the	changes	made	by	
committed	ones

requires	writing changed	elements	to	disk	
BEFORE the	commit	log	record	is	written

requires	writing changed	elements	to	disk	
AFTER	the	commit	log	record	is	written

<T, X,	v>:	v	is	OLD value of	X <T, X	v>:	v	is	NEW value of	X

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 59



Types	of	REDO	log	records
• <START	T>

– transaction	T	has	begun
• <COMMIT		T>

– T	has	completed	successfully,	no	more	changes	will	be	made
– Note	that	seeing	<COMMIT	T>	does	not	automatically	ensure	that	

changes	have	been	written	to	disk
• has	to	be	enforced	by	log	manager

• <ABORT	T>
– transaction	T	could	not	complete	successfully
– job	of	the	transaction	mgr to	ensure	that	changes	by	T	never	appear	

on	disk	or	are	cancelled	

• <T,	X,	v>	
– update	record	for	REDO	log
– T	has	changed	object	X,	and	its	NEW	value	is	v

• NOTE:	we	only	record	the	new value,	not	the	old	value	(unlike	
UNDO)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 60

same	as	UNDO



REDO	logging	rule

(R1)	Before modifying	any	element	X	on	disk,	all	
log	records pertaining	to	this	modification,	
including	<T,	X,	v>	and	<COMMIT	T>,	must	
appear	on	disk

– single	“redo	rule”
– called	the	WRITE-AHEAD	LOGGING	(WAL)	rule

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 61



Order	of	write	to	disk	for	REDO	log

1. First,	the	log	records	indicating	changed	DB	
elements	should	be	written

2. Second,	The	COMMIT	log	record	should	be	written

3. Finally,	the	changed	DB	elements	should	be	written

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 62

different	order	
than	UNDOUNDO:	order	of	writing	to	disk

1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>

REDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	12>	(new	value	12)
3. <COMMIT		T>
4. A	=	12	(new	value	12)



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 <COMMIT T>
9 FLUSH LOG
10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

63

initially	A	=	8,	B	=	8 EXAMPLE:	REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B,16>
8 <COMMIT T>
9 FLUSH LOG
10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

64

initially	A	=	8,	B	=	8 EXAMPLE:	REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Recovery	using
REDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 65



Recovery	with	REDO	log
• Identify	committed	transactions

– scan	from	the	end	to	identify	committed	transactions
– make	redo	changes	in	the	forward	direction

• For	each	log	record	<T,	X,	v>
– If	T	is	not a	committed	transaction

• do	nothing
– If	T	is	committed

• write	the	value	v	of	element	X

• For	each	incomplete	transaction	T
– write	<ABORT	T>
– Flush	the	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 66

REDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	12>	(new	value	12)
3. <COMMIT		T>
4. A	=	12	(new	value	12)



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 COMMIT <COMMIT T>
9 FLUSH LOG
10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

67

initially	A	=	8,	B	=	8 EXAMPLE:	REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

• Crash	after	step	9
• <COMMIT	T>	already	on	disk	– T	committed
• <T,	A,	16>	and	<T,	B,	16>	- write	values	of	A	=	16	and	B	=	16
• Note:	crash	after	step	10	or	11	----some	writes	are	redundant	but	harmless

Crash	example	1



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 COMMIT <COMMIT T>
9 FLUSH LOG
10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

68

initially	A	=	8,	B	=	8 EXAMPLE:	REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

• Crash	before		step	9
• <COMMIT	T>	not	on	disk	– T	not	committed	– values	not	updated	on	disk
• No	changes	of	A	and	B	on	disk
• Write	<ABORT	T>	to	log

Crash	example	2



Checkpointing for	REDO	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 69



Checkpointing process

1. Write	log	record	<START	CKPT(T1,	…,	Tk)>	where	T1,…,Tk are	
the	active	(uncommitted)	transactions,	and	flush	the	log

2. Write	to	disk	all	db elements	that	were	written	to	buffers	but	
not	yet	to	disk	by	transactions	that	had	already	committed	
before	the	<START	CKPT>	record	was	written	to	the	log

3. Write	a	log	record	<END	CKPT>	to	the	log	and	flush	the	log	

Unlike	(nonquiescent checkpointing for)	UNDO	log,	we	can	
complete	the	checkpointing for	REDO	without	waiting	for	the	
active	transactions	to	commit	or	abort,	as	they	are	not	writing	to	
disk	during	checkpointing anyway

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 70



A	REDO	log	with	checkpointing
Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	10>

<START	CKPT(	T2)>

<T2,	C,	15>

<START T3>

<T3,	D,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 71

• T2	is	ongoing
• Only	T2	in	<START	CKPT…>
• During	checkpointing,	write	changes	

by	T1	to	disk
– already	committed	before	the	

checkpointing started

• can	accept	new	transactions	while	
checkpointing (T3	here)



Recovery:		REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	10>

<START	CKPT(	T2)>

<T2,	C,	15>

<START T3>

<T3,	D,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 72

• Find	last	ckpt <END	CKPT>	before	crash

• every	value	written	by	committed	transactions	
before	<START	CKPT…>	already	on	disk

– Here	T1

• Limit	recovery	(like	before)	only	for	committed	
transactions	in	<START	CKPT…>	or	those	that	
started	after	<START	CKPT…>
– Here	T2	and	T3
– <COMMIT	T2>	and	<COMMIT	T3>	found	after	

<START	CKPT..>
– both	to	be	REdone

• No	need	to	look	further	back	than	the	earliest	
of	these	<START	Ti>	records
– Here	<START	T2>

CRASH



Recovery:		REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	10>

<START	CKPT(	T2)>

<T2,	C,	15>

<START T3>

<T3,	D,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 73

• <COMMIT	T2>	and	<COMMIT	T3>	
found	after	<START	CKPT..>
– both	to	be	REdone

• REDO	Update	(in	order)
– <T2,	B,	10>:	B	=	10
– <T2,	C,	15>:	C	=	15
– <T3,	D	,	20>:	D	=	20

• Note:	update	has	to	be	in	the	forward	
direction (redo	log,	unlike	undo)

CRASH



Recovery:		REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	10>

<START	CKPT(	T2)>

<T2,	C,	15>

<START T3>

<T3,	D,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 74

• Example	1:

• Crash	before	<COMMIT	T3>

• T3	has	not	committed

• No	need	to	redo	for	<T3,	D,	20>



Recovery:		REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	10>

<START	CKPT(	T2)>

<T2,	C,	15>

<START T3>

<T3,	D,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 75

• Example	2:

• Crash	before	<END	CKPT>

• Need	to	find	last	<END	CKPT>	and	
then	its	<START	CKPT…>
– Here	no	other	<END	CKPT>
– Scan	until	the	start	of	the	log

• Only	<COMMIT	T1>	found
– Redo	A	=	5	for	<T1,	A,	5>



Pros	and	Cons
UNDO	vs.	REDO

UNDO REDO

requires	data	to	be	written	to	disk	
immediately	after	a	transaction	finishes	--
might	increase	the	no.	of	disk	I/Os that	

need	to	be	performed
(STEAL +	FORCE)

requires us	to	keep	all	modified	blocks	in	
buffers	until	the	transaction	commits	and	
the	log	records	have	been	flushed	– might	
increase	the	average	number	of	buffers	

required	by	transactions
(NO	STEAL	+	NO	FORCE)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 76

Also	both	may	have	conflicts	during	checkpointing with	shared		buffers
• suppose	A	in	a	page	is	changed	by	a	committed	tr but	B	is	changed	by	a	

uncommitted	one
• ok	if	no	shared	buffers

Get	benefits	of	both	(STEAL	+	NO	FORCE)– at	the	expense	of	maintaining	more	log	
records

UNDO/REDO	logging	



UNDO/REDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 77



UNDO/REDO	logging

• <T,	X,	v,	w>
– T	changed	the	value	of	element	X
– former	value	v
– new	value	w

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 78



UNDO/REDO	logging	rule

(UR	rule)	Before modifying	any	element	X	on	disk,	<T,	X,	
v,	w>	must	appear	on	disk

– Only	constraint	imposed	by	both UNDO	and	REDO	log
– no	constraint	on	<COMMIT	T>

• can	precede	or	follow	any	of	the	changes	to	the	db elements	on	
disk

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 79

UNDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	10>	(old	value	10)
3. A	=	12	(new	value	12)
4. <COMMIT		T>

REDO:	order	of	writing	to	disk
1. <START	T>
2. <T,	A,	12>	(new	value	12)
3. <COMMIT		T>
4. A	=	12	(new	value	12)



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10 <COMMIT T>

11 OUTPUT(B) 16 16 16 16 16

80

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO/REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Step	10	(commit)	could	have	also	appeared	
before	Step	(8),	before	Step	(9),	or	after	Step	(11)



Recovery	using
UNDO/REDO	logging

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 81



Recovery	with	UNDO/REDO	log
• REDO	all committed	transactions	in	the	order	earliest-
first	(forward)

• UNDO	all	uncommitted/incomplete	transactions	in	the	
order latest	first	(backward)

• Important	to	do	both	
– because	of	the	flexibility	allowed	by	UNDO/REDO	logging	
regarding	<COMMIT>	records

• we	can	have
– a	committed	transaction	with	not	all	changes	written	to	
disk

– an	uncommitted	transactions	with	some	changes	written	
to	disk

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 82



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10 <COMMIT T>

11 OUTPUT(B) 16 16 16 16 16

83

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO/REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Crash	example	1

• Crash	after <COMMIT	T	>	is	flushed	to	disk
• T	is	considered	as	committed
• First	update	A	to	16
• Then	update	B	to	16	(forward	direction)
• Some	changes	may	be	unnecessary	but	harmless



Action T Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10 <COMMIT T>

11 OUTPUT(B) 16 16 16 16 16

84

initially	A	=	8,	B	=	8 EXAMPLE:	UNDO/REDO	LOG

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems

Crash	example	1

• Crash	before <COMMIT	T	>	is	flushed	to	disk
• T	is	considered	as	uncommitted
• First	update	B	to	8
• Then	update	A	to	8		(backward	direction)
• Some	changes	may	be	unnecessary	but	harmless



Checkpointing for	UNDO/REDO	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 85



Checkpointing process

1. Write	log	record	<START	CKPT(T1,	…,	Tk)>	where	T1,…,Tk are	
the	active	(uncommitted)	transactions,	and	flush	the	log

2. Write	to	disk	all records	that	are	dirty
– i.e.	contain	one	or	more	changed	db elements
– NOTE:	unlike	REDO	logging,	flush	all	dirty	buffers	– not	just	those	

written	by	committed	transactions

3. Write	a	log	record	<END	CKPT>	to	the	log	and	flush	the	log

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 86



An	UNDO/REDO	log	with	checkpointing
Log	records

<START	T1>

<T1,	A,	4,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	9,	10>

<START	CKPT(	T2)>

<T2,	C,	14,	15>

<START T3>

<T3,	D,	19,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 87

• T2	is	active
• T2’s	new	B	value	will	be	written	to	disk	

when	the	checkpointing begins
– unlike	REDO,	where	first	commit,	then	

write

• During	CKPT,	
– flush	A	to	disk	if	it	is	not	already	there	

(dirty	buffer)
• like	REDO

– flush	B	to	disk	if	it	is	not	already	there	
(dirty	buffer)

• unlike	REDO



Recovery:	
An	UNDO/REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	4,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	9,	10>

<START	CKPT(	T2)>

<T2,	C,	14,	15>

<START T3>

<T3,	D,	19,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 88

• T1	has	committed	and	writes	on	disk
– ignore	T1

• REDO	T2	and	T3
• For	T2

– no	need	to	look	prior	to	<START	CKPT(T2)>
– T2’s	changes	before	START	CKPT	were	

flushed	to	disk	during	CKPT
– unlike	REDO

CRASH



Recovery:	
An	UNDO/REDO	log	with	checkpointing

Log	records

<START	T1>

<T1,	A,	4,	5>

<START	T2>

<COMMIT	T1>

<T2,	B,	9,	10>

<START	CKPT(	T2)>

<T2,	C,	14,	15>

<START T3>

<T3,	D,	19,	20>

<END	CKPT>

<COMMIT	T2>

<COMMIT	T3>

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 89

• T1	has	committed	and	writes	on	disk
– ignore	T1

• T2	committed,	T3	uncommitted
• REDO	T2	and	UNDO	T3
• For	T2

– set	C	to	15
– not	necessary	to	set	B	to	10	(before	END	

CKPT	– already	on	disk)
• For	T3

– set	D	to	19
– if	T3	had	started	before	START	CKPT,	would	

have	had	to	look	before	START	CKPT	for	
more	actions	to	be	undone



Summary
• UNDO	logging

– <T,	X,	u>:	u	is	the	old value	of	X
– <T,	X,	u>	to	disk	à X	=	new	value	to	disk	à …	<COMMIT	T>	to	disk
– undo	uncommitted	transactions

• REDO	logging
– <T,	X,	v>:	v	is	the	new value	of	X
– <T,	X,	v>	to	disk	à ….	<COMMIT	T>	to	disk	à X	=	new	value	to	disk	…
– redo	committed	transactions

• UNDO/REDO	logging
– <T,	X,	u,	v>:	u	is	the	old value	of	X	and	v	is	the	new value	of	X
– <T,	X,	u,	v>	to	disk	à X	=	new	value	to	disk
– No	constraints	on	writing	<COMMIT	T>	to	disk
– both:	undo	uncommitted	and	redo	committed	transactions

• Understand	for	each	of	these	three
– standard	recovery
– checkpointing,	and	
– recovery	with	checkpointing

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 90


