
CompSci 516
Database	Systems

Lecture	18
Distributed	DBMS

Instructor:	Sudeepa Roy

1Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Announcements
• HW3	on	NOSQL	and	MongoDB	to	be	released	soon

– Install	the	system	first
– Due	in	two	weeks	after	NOSQL	in	class
– Keep	working	on	the	project	in	the	meantime!

2Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Where	are	we	now?
We	learnt
ü Relational	Model	and	

Query	Languages
ü SQL,	RA,	RC
ü Postgres	(DBMS)
§ HW1

ü Map-reduce	and	spark
§ HW2

ü DBMS	Internals
ü Storage
ü Indexing
ü Query	Evaluation
ü Operator	Algorithms
ü External	sort
ü Query	Optimization

ü Database	Normalization
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 3

ü Transactions
ü Basic	concepts
ü Concurrency	control
ü Recovery

Next
• Distributed	DBMS
• NOSQL

• (ARIES	protocol	of	transactions	to	
be	covered	later)



Reading	Material
• [RG]

– Parallel	DBMS:	Chapter	22.1-22.5
– Distributed	DBMS:	Chapter	22.6	– 22.14

• [GUW]		
– Parallel	DBMS	and	map-reduce:	Chapter	20.1-20.2
– Distributed	DBMS:	Chapter	20.3,	20.4.1-20.4.2,	20.5-20.6

• Other	recommended	readings:
– Chapter	2	(Sections	1,2,3)	of	Mining	of	Massive	Datasets,	by	Rajaraman and	Ullman:		

http://i.stanford.edu/~ullman/mmds.html
– Original	Google	MR	paper	by	Jeff	Dean	and	Sanjay	Ghemawat,	OSDI’	04:	

http://research.google.com/archive/mapreduce.html

4

Acknowledgement:	
The	following	slides	have	been	created	adapting	the
instructor	material	of	the	[RG]	book	provided	by	the	authors
Dr.	Ramakrishnan	and		Dr.	Gehrke.

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems



Parallel	and	Distributed	Data	
Processing

• So	far,	query	processing	on	a	single	machine
– Query	Execution	and	Optimization
– Transaction	CC	and	Recovery

• Now:	data	and	operation	distribution

• Parallelism
– performance
– Parallel	databases	(will	be	covered	soon)

• Data	distribution
– increased	availability,	e.g.	when	a	site	goes	down
– distributed	local	access	to	data	(e.g.	an	organization	may	have	branches	in	

several	cities)
– analysis	of	distributed	data
– Distributed	DBMS	(today)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 5



Topics	in	Distributed	DBMS

• Architecture
• Data	Storage
• Query	Execution
• Transactions	– updates
• Recovery	– Two	Phase	Commit	(2PC)

• Warning!	Many	concepts	and	terminology

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 6



Introduction:	Distributed	Databases

• Data	is	stored	at	several	sites,	each	
managed	by	a	DBMS	that	can	run	
independently

• Desired	properties
1. Distributed	Data	Independence
2. Distributed	Transaction	Atomicity

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 7



Distributed	Data	Independence
• Users	should	not	have	to	know	where	data	is	
located
– no	need	to	know	the	locations	of	references	
relations,	their	copies	or	fragments	(later)

– extends	Physical	and	Logical	Data	Independence	
principles

• Queries	spanning	multiple	sites	should	be	
optimized	in	a	cost-based	manner
– taking	into	account	communication	costs	and	
differences	in	local	computation	costs

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 8



Distributed	Transaction	Atomicity

1. Users	should	be	able	to	write	transactions	
accessing	multiple	sites	just	like	local	
transactions

2. The	effects	of	a	transaction	across	sites	
should	be	atomic
– all	changes	persist	if	transaction	commits
– none	persist	if	transaction	aborts

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 9



Recent	Trends	on	These	Two	Properties

• These	two	properties	are	in	general	desirable
• But	not	always	efficiently	achievable

– e.g.	when	sites	are	connected	by	a	slow	long-distance	network

• Even	sometimes	not	desirable	for	globally	distributed	sites
– too	much	administrative	overhead	of	making	location	of	data	

“transparent”	(not	visible	to	user)

• Therefore	not	always	supported
– Users	have	to	be	aware	of	where	data	is	located
– Not	much	consensus	on	the	design	objectives	on	distributed	

databases	

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 10



Types	of	Distributed	Databases

• Homogeneous:
– Every	site	runs	same	type	of	DBMS

• Heterogeneous:
– Different	sites	run	different	DBMSs
– different	RDBMSs	or	even	non-relational	DBMSs
– RDBMS	=	Relational	DBMS

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 11



More	on	Heterogeneous	
Distributed	Databases

• Database	servers	are	accessed	through	well-accepted	and	
standard	Gateway	protocols
– masks	the	differences	of	DBMSs	(capability,	data	format	etc.)
– e.g.	ODBC,	JDBC

• However,	can	be	expensive	and	may	not	be	able	to	hide	all	
differences
– e.g.	when	a	server	is	not	capable	of	supporting	distributed	

transaction	management

DBMS1 DBMS2 DBMS3

Gateway

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 12



Distributed	DBMS	Architecture

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 13



Distributed	DBMS	Architectures

• Three	alternative	approaches

1. Client-Server
2. Collaborating	Server
3. Middleware

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 14



Client-Server	Systems

CLIENT CLIENT

SERVER SERVER SERVER

QUERY

• One	or	more	client	(e.g.	personal	computer)	and	one	or	more	server	processes	
(e.g.	a	mainframe)
– A	client	process	can	ship	a	query	to	any	server	process
– Clients	are	responsible	for	user	interfaces
– Server	manages	data	and	executes	queries

• Advantages
– clean	separation	and	centralized	server
– expensive	server	machines	are	not	underutilized	by	simple	user	interactions	
– users	can	run	GUI	on	clients	that	they	are	familiar	with

• Challenges
– need	to	carefully	handle	communication	costs
– e.g.	fetching	tuples	one	at	a	time	might	be	bad	– need	to	do	caching	on	client	side

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 15



Collaborating	Server	Systems

SERVER
SERVER

SERVERQUERY

• Queries	can	span	multiple	sites
– not	allowed	in	client-servers	as	the	clients	would	have	
had	to	break	queries	and	combine	the	results

• When	a	server	receives	a	query	that	requires	
access	to	data	at	other	servers
– it	generates	appropriate	subqueries
– puts	the	result	together

• Eliminates	distinction	between	client	and	server

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 16



Middleware	Systems
• Allows	a	single	query	to	span	multiple	servers

• But	does	not	require	all	db servers	to	be	capable	of	
handling	multi-site	execution	strategies
– need	just	one	db server	capable	of	managing	queries	and	

transactions	spanning	multiple	servers	(called	middleware)
– the	remaining	servers	can	handle	only	the	local	queries	and	

transactions

• The	middleware	layer	is	capable	of	executing	joins	and	
other	operations	on	data	obtained	from	other	servers,	but	
typically	does	not	maintain	any	data

• Useful	when	trying	to	integrate	several	“legacy	systems”	
– whose	basic	capabilities	cannot	be	extended

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 17



Storing	Data	in	Distributed	DBMS

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 18



Storing	Data	in	a	Distributed	DBMS
• Relations	are	stored	across	several	sites
• Accessing	data	at	a	remote	site	incurs	message-
passing	costs

• To	reduce	this	overhead,	a	single	relation	may	be	
partitioned or	fragmented across	several	sites
– typically	at	sites	where	they	are	most	often	accessed

• The	data	can	be	replicated as	well
– when	the	relation	is	in	high	demand

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 19



Fragmentation

• Horizontal:	
– Usually	disjoint
– Can	often	be	identified	by	a	selection	query	(employees	in	a	city	– locality	of	

reference)
– To	retrieve	the	full	relation,	need	a	union

• Vertical:
– Identified	by	projection	queries
– Typically	unique	TIDs	added	to	each	tuple
– TIDs	replicated	in	each	fragments
– Ensures	that	we	have	a	Lossless	Join

TID
t1
t2
t3
t4

• Break	a	relation	into	smaller	relations	or	fragments
– store	them	in	different	sites	as	needed

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 20



Replication
• When	we	store	several	copies	of	a	relation	or	relation	fragments

– can	be	replicated	at	one	or	more	sites
– e.g.	R	is	fragmented	into	R1,	R2,	R3;	one	copy	of	R2,	R3;	but	two	copies	

at	R1	at	two	sites
• Advantages

– Gives	increased	availability	– e.g.	when	a	site	or	communication	link	goes	
down

– Faster	query	evaluation	– e.g.	using	a	local	copy
• Synchronous	and	Asynchronous	(later)

– Vary	in	how	current	different	copies	are	when	a	relation	is	modified

R1
R1 R2

R3

SITE	A SITE	B

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 21



Distributed	Catalog	Management
• Must	keep	track	of	how	data	is	fragmented	and	replicated	across	sites

– in	addition	to	usual	schema,	authorization,	and	statistical	information

• Must	be	able	to	uniquely	identify	each	replica	of	each	fragment
– Globally	unique	name	may	compromise	autonomy	of	servers
– To	preserve	local	autonomy:	Global	relation	name	=	<local-name,	birth-

site>
– To	identify	a	replica,	add	a	replica-id	field (now	called	global	replica	

name)

• Site	Catalog: Describes	all	objects	(fragments,	replicas)	at	a	site	+	
Keeps	track	of	replicas	of	relations	created	at	this	site
– To	find	a	relation,	look	up	its	birth-site	catalog
– Birth-site	never	changes,	even	if	relation	is	moved

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 22



Distributed	Query	Processing

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 23

No	joins
Join



Non-Join	Distributed	Queries

• Horizontally	Fragmented: Tuples	with	rating	<	5	at	Shanghai,	>=	5	at	Tokyo.
– Must	compute	SUM(age),	COUNT(age)	at	both	sites.
– If	WHERE contained	just	S.rating >	6,	just	one	site

• Vertically	Fragmented: sid and	rating	at	Shanghai,	sname and	age	at	Tokyo,	
tid at	both.
– Must	reconstruct	relation	by	join	on	tid,	then	evaluate	the	query
– if	no	tid,	decomposition	would	be	lossy

• Replicated: Sailors	copies	at	both	sites.
– Choice	of	site	based	on	local	costs	(e.g.	index),	shipping	costs

SELECT	AVG(S.age)
FROM	Sailors	S
WHERE	S.rating >	3

AND	S.rating <	7tid sid sname rating age

T1 4

T2 5

T3 9

stored	at	Shanghai

stored	at	Tokyo

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 24



Joins	in	a	Distributed	DBMS
• Can	be	very	expensive	if	relations	are	stored	at	
different	sites

1. Fetch	as	needed
2. Ship	to	one	site
3. Semi-join
4. Bloom	join

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 25

Sailors	(S) Reserves	(R)

LONDON PARIS

500	pages 1000	pages



1.	Fetch	As	Needed
• Page-oriented	Nested	Loop	Join

– Sailors	as	outer	– for	each	S	page,	fetch	all	R	pages	from	Paris
– if	cached	at	London,	each	R	page	fetched	once
– Otherwise,	Cost: 500	d	+	500	*	1000	(d+s)
– d is	cost	to	read/write	page
– s	is	cost	to	ship	page
– If	query	was	not	submitted	at	London,	must	add	cost	of	shipping	

result	to	query	site
– Can	also	do	Index	NL	at	London,	fetching	matching	Reserves	tuples	to	

London	as	needed
LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 26



2.	Ship	To	One	Site
• Ship	Sailors	(S)	to	Paris

– Cost:	500	(2d	+	s)	+	4500	d
– For	relation	S:	reading	in	London,	shipping	to	Paris,	and	saving	it	in	Paris:	500	

(2d	+	s)	
– Assume	Sort-Merge	Join	with	cost	3(M+N),	i.e.	enough	memory
– Then	join	cost	=	3*(500+1000)d
– If	result	size	is	very	large,	may	be	better	to	ship	both	relations	to	result	site	

and	then	join	them
• Not	all	tuples	in	S	join	with	a	tuple	in	R

– unnecessary	shipping
– solution:	Semi-join

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 27



3.	Semijoin -1/2
• Suppose	want	to	ship	R	to	London	and	then	do	join	with	S	at	

London.	Instead,
1. At	London, project	S	onto	join	columns	and	ship	this	to	Paris

– Here	foreign	keys,	but	could	be	arbitrary	join

2. At	Paris, join	S-projection	with	R
– Result	is	called	reduction of	Reserves	w.r.t. Sailors (only	these	tuples	are	

needed)

3. Ship	reduction	of	R	to	back	to	London
4. At	London, join	S	with	reduction	of	R

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 28



3.	Semijoin – 2/2

• Tradeoff	the	cost	of	computing	and	shipping	projection	
for	cost	of	shipping	full	R	relation

• Especially	useful	if	there	is	a	selection	on	Sailors,	and	
answer	desired	at	London

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 29

End	of
Lecture	18



4.	Bloomjoin – 1/4

• Similar	idea	like	semi-join
• Suppose	want	to	ship	R	to	London	and	then	do	
join	with	S	at	London (like	semijoin)

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 30

Start	of
Lecture	19



4.	Bloomjoin – 2/4

1. At	London, compute	a	bit-vector	of	some	size	k:
– Hash	column	values	into	range	0	to	k-1
– If	some	tuple	hashes	to	p,	set	bit	p	to	1	(p	from	0	to	k-1)
– Ship	bit-vector	to	Paris

2. At	Paris, hash	each	tuple	of	R	similarly
– discard	tuples	that	hash	to	0	in	S’s	bit-vector
– Result	is	called	reduction	of	R	w.r.t S

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 31



4.	Bloomjoin – 3/4

3. Ship	“bit-vector-reduced”	R	to	London
4. At	London, join	S	with	reduced	R

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 32



4.	Bloomjoin – 4/4

• Bit-vector	cheaper	to	ship,	almost	as	effective
– the	size	of	the	reduction	of	R	shipped	back	can	be	
larger.	Why?

LONDON PARIS

500	pages 1000	pages

Sailors	(S) Reserves	(R)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 33



Distributed	Query	Optimization

• Cost-based	approach
– consider	all	plans
– pick	cheapest

• Similar	to	centralized	optimization,	but	have	differences
1. Communication	costs	must	be	considered
2. Local	site	autonomy	must	be	respected
3. New	distributed	join	methods

• Query	site	constructs	global	plan,	with	suggested	local	
plans describing	processing	at	each	site
– If	a	site	can	improve	suggested	local	plan,	free	to	do	so

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 34



Updating	Distributed	Data

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 35

Synchronous
Asynchronous

Distributed	transactions



Updating	distributed	data

• Classical	view	says	that	it	should	be	the	same	as	a	
centralized	DBMS	from	user’s	viewpoint and	addressed	
at	implementation	level

• so	far,	we	had	this	w.r.t.	“queries”

• w.r.t “updates”,	this	means	transactions	should	be	atomic	
regardless	of	data	fragmentation	and	replication

• But	there	are	other	alternatives	too

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 36



Updating	Distributed	Data

• Synchronous	Replication:	All	copies	of	a	modified	
relation	(or	fragment)	must	be	updated	before	the	
modifying	transaction	commits
– Data	distribution	is	made	“transparent”	(not	visible!)	to	users

• Asynchronous	Replication:		Copies	of	a	modified	
relation	are	only	periodically	updated;	different	copies	
may	get	out	of	sync	in	the	meantime
– Users	must	be	aware	of	data	distribution
– More	efficient	– many	current	products	follow	this	approach

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 37



Synchronous	Replication
• Voting:		transaction	must	write	a	majority	of	copies	to	
modify	an	object;	must	read	enough	copies	to	be	sure	of	
seeing	at	least	one	most	recent	copy
– E.g.,	10	copies;	7	written	for	update;	4	copies	read	(why	4?)
– Each	copy	has	version	number	– copy	with	the	highest	
version	number	is	current

– Not	attractive	usually	because	reads	are	common

• Read-any	Write-all:		Read	any	copy,	Write	all	copies
– Writes	are	slower	and	reads	are	faster,	relative	to	Voting
– Most	common	approach	to	synchronous	replication
– A	special	case	of	voting	(why?)

• Choice	of	technique	determines	which	locks	to	set
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 38



Cost	of	Synchronous	Replication
• Before	an	update	transaction	can	commit,	it	must	
obtain	locks	on	all	modified	copies
– Sends	lock	requests	to	remote	sites,	and	while	waiting	
for	the	response,	holds	on	to	other	locks

– If	sites	or	links	fail,	transaction	cannot	commit	until	
they	are	back	up

– Even	if	there	is	no	failure,	committing	must	follow	an	
expensive	commit	protocol	with	many	messages	(later)

• So	the	alternative	of	asynchronous	replication	is	
becoming	widely	used

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 39



Asynchronous	Replication
• Allows	modifying	transaction	to	commit	before	all	
copies	have	been	changed
– readers	nonetheless	look	at	just	one	copy
– Users	must	be	aware	of	which	copy	they	are	reading,	
and	that	copies	may	be	out-of-sync	for	short	periods	
of	time

• Two	approaches:		Primary	Site	and	Peer-to-Peer	
replication
– Difference	lies	in	how	many	copies	are	“updatable" or	
“master	copies"

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 40



Primary	Site	Replication
• Exactly	one	copy	of	a	relation	is	designated	the	
primary or	master	copy
– Replicas	at	other	sites	cannot	be	directly	updated
– The	primary	copy	is	published
– Other	sites	subscribe	to	this	relation	(or	its	fragments)
– These	are	secondary	copies

• How	are	changes	to	the	primary	copy	propagated	to	
the	secondary	copies?
– Done	in	two	steps
– First,	“capture”	changes	made	by	committed	transactions
– Then,	“apply”	these	changes

• more	details	in	the	[RG]	book	(optional	reading)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 41



Peer-to-Peer	Replication
• More	than	one	of	the	copies	of	an	object	can	be	a	
master

• Changes	to	a	master	copy	must	be	propagated	to	
other	copies	somehow

• If	two	master	copies	are	changed	in	a	conflicting	
manner,	conflict	resolution	needed
– e.g.,	Site	1:	Joe’s	age	changed	to	35;	Site	2:	to	36

• Best	used	when	conflicts	do	not	arise:
– E.g.,	Each	master	site	owns	a	disjoint	fragment
– E.g.,	Updating	rights	held	by	one	master	at	a	time	– then	
propagated	to	other	sites

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 42



Distributed	Transactions

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 43

Distributed	CC
Distributed	Recovery



Distributed	Transactions

• Distributed	CC
– How	can	locks	for	objects	stored	across	several	
sites	be	managed?

– How	can	deadlocks	be	detected	in	a	distributed	
database?

• Distributed	Recovery
–When	a	transaction	commits,	all	its	actions,	across	
all	the	sites	at	which	is	executes	must	persist

–When	a	transaction	aborts,	none	of	its	actions	
must	be	allowed	to	persist

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 44



Distributed	Locking
• How	do	we	manage	locks	for	objects	across	many	sites?		

1. Centralized: One	site	does	all	locking
– Vulnerable	to	single	site	failure

2. Primary	Copy: All	locking	for	an	object	done	at	the	
primary	copy	site	for	this	object
– Reading	requires	access	to	locking	site	as	well	as	site	where	

the	object	copy	is	stored

3. Fully	Distributed: Locking	for	a	copy	done	at	site	where	
the	copy	is	stored
– Locks	at	all	sites	while	writing	an	object	(unlike	previous	two)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 45



Distributed	Deadlock	Detection

• Each	site	maintains	a	local	waits-for	graph

• A	global	deadlock	might	exist even	if	the	local	graphs	contain	no	cycles

• Further,	phantom	deadlocks	may	be	created	while	communicating
– due	to	delay	in	propagating	local	information
– might	lead	to	unnecessary	aborts

T1 T1 T1T2 T2 T2

SITE	A SITE	B GLOBAL

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 46



Three	Distributed	
Deadlock	Detection	Approaches

T1 T1 T1T2 T2 T2

SITE	A SITE	B GLOBAL

1. Centralized
• send all local graphs to one site periodically
• A global waits-for graph is generated

2. Hierarchical
• organize sites into a hierarchy and send local graphs to parent in the 

hierarchy
• e.g. sites (every 10 sec)-> sites in a state (every min)-> sites in a 

country (every 10 min) -> global waits for graph
• intuition: more deadlocks are likely across closely related sites

3. Timeout
• abort transaction if it waits too long (low overhead)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 47



Distributed	Recovery

• Two	new	issues:
– New	kinds	of	failure,	e.g.,	links	and	remote	sites
– If	“sub-transactions”	of	a	transaction	execute	at	
different	sites,	all	or	none	must	commit

– Need	a	commit	protocol to	achieve	this
– Most	widely	used:	Two	Phase	Commit	(2PC)

• A	log	is	maintained	at	each	site
– as	in	a	centralized	DBMS
– commit	protocol	actions	are	additionally	logged

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 48



Two	Phase	Commit	(2PC)

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 49



Two-Phase	Commit	(2PC)

• Site	at	which	transaction	originates	is	
coordinator

• Other	sites	at	which	it	executes	are	
subordinates
– w.r.t.	coordinarion of	this	transaction

Example	on	whiteboard

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 50



When	a	transaction	wants	to	commit – 1/5

1. Coordinator	sends	prepare	message to	each	
subordinate

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 51



When	a	transaction	wants	to	commit – 2/5

2. Subordinate	receives	the	prepare	message
a) decides	whether	to	abort	or	commit	its	

subtransaction
b) force-writes	an	abort	or	prepare log	record	
c) then	sends	a	no or	yes message	to	coordinator

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 52



When	a	transaction	wants	to	commit	– 3/5

3. If	coordinator	gets	unanimous	yes votes	from	
all	subordinates
a) it	force-writes	a	commit log	record
b) then	sends	commit	message	to	all	subs

Else	(if	receives	a	no	message	or	no	response	
from	some	subordinate),

a) it	force-writes	abort	log	record
b) then	sends	abort messages

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 53



When	a	transaction	wants	to	commit	– 4/5

4. Subordinates	force-write	abort/commit log	
record	based	on	message	they	get
a) then	send	ack message	to	coordinator
b) If	commit	received,	commit	the	subtransaction
c) write	an	end record

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 54



When	a	transaction	wants	to	commit	– 5/5

5. After	the	coordinator	receives	ack from	all	
subordinates,	
– writes	end log	record

Transaction	is	officially	committed	when	the	
coordinator’s	commit	log	record	reaches	the	disk
– subsequent	failures	cannot	affect	the	outcomes

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 55



Comments	on	2PC
• Two	rounds	of	communication

– first,	voting
– then,	termination
– Both	initiated	by	coordinator

• Any	site	(coordinator	or	subordinate)	can	unilaterially decide	to	
abort	a	transaction
– but	unanimity/consensus	needed	to	commit

• Every	message	reflects	a	decision	by	the	sender
– to	ensure	that	this	decision	survives	failures,	it	is	first	recorded	in	the	local	

log	and	is	force-written	to	disk

• All	commit	protocol	log	records	for	a	transaction	contain	tid and	
Coordinator-id
– The	coordinator’s	abort/commit	record	also	includes	ids	of	all	

subordinates.
Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 56



Restart	After	a	Failure	at	a	Site	– 1/4

• Recovery	process	is	invoked	after	a	sites	comes	
back	up	after	a	crash
– reads	the	log	and	executes	the	commit	protocol
– the	coordinator	or	a	subordinate	may	have	a	crash
– one	site	can	be	the	coordinator	some	transaction	and	
subordinates	for	others

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 57



Restart	After	a	Failure	at	a	Site	– 2/4

• If	we	have	a	commit	or	abort log	record	for	
transaction	T,	but	not	an	end	record,	must	
redo/undo	T	respectively
– If	this	site	is	the	coordinator	for	T	(from	the	log	
record),	keep	sending	commit/abort messages	to	subs	
until	acks received

– then	write	an	end log	record	for	T

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 58



Restart	After	a	Failure	at	a	Site	– 3/4

• If	we	have	a	prepare log	record	for	transaction	T,	
but	not	commit/abort
– This	site	is	a	subordinate	for	T
– Repeatedly	contact	the	coordinator	to	find	status	of	T
– Then	write	commit/abort log	record
– Redo/undo	T
– and	write	end log	record

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 59



Restart	After	a	Failure	at	a	Site	– 4/4

• If	we	don’t	have	even	a	prepare	log	record	for	T
– T	was	not	voted	to	commit	before	crash
– unilaterally	abort	and	undo	T
– write	an	end	record

• No	way	to	determine	if	this	site	is	the	coordinator	
or	subordinate
– If	this	site	is	the	coordinator,	it	might	have	sent	
prepare	messages

– then,	subs	may	send	yes/no	message	– coordinator	is	
detected	– ask	subordinates	to	abort

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 60



Blocking

• If	coordinator	for	transaction	T	fails,	subordinates	
who	have	voted	yes cannot	decide	whether	to	
commit	or	abort	T	until	coordinator	recovers.
– T	is	blocked
– Even	if	all	subordinates	know	each	other	(extra	
overhead	in	prepare	message)	they	are	blocked	unless	
one	of	them	voted	no

• Note:	even	if	all	subs	vote	yes,	the	coordinator	
then	can	give	a	no	vote,	and	decide	later	to	
abort!

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 61



Link	and	Remote	Site	Failures

• If	a	remote	site	does	not	respond	during	the	
commit	protocol	for	transaction	T,	either	because	
the	site	failed	or	the	link	failed:
– If	the	current	site	is	the	coordinator	for	T,	should	abort	T
– If	the	current	site	is	a	subordinate,	and	has	not	yet	voted	
yes, it	should	abort	T

– If	the	current	site	is	a	subordinate	and	has	voted	yes, it	is	
blocked	until	the	coordinator	responds

– needs	to	periodically	contact	the	coordinator	until	
receives	a	reply

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 62



Observations	on	2PC

• Ack messages	used	to	let	coordinator	know	when	it	
can	“forget”	a	transaction;	until	it	receives	all	acks,	it	
must	keep	T	in	the	transaction	Table

• If	coordinator	fails	after	sending	prepare	messages	
but	before	writing	commit/abort log	records,	when	it	
recovers,	it	aborts	the	transaction

• If	a	subtransaction does	no	updates,	its	commit	or	
abort	status	is	irrelevant

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 63



Other	variants	of	2PC
• 2PC	with	presumed	abort

– When	coordinator	aborts	T,	it	undoes	T	and	removes	it	from	the	
transaction	Table	immediately	(presumes	abort).	Doesn’t	wait	for	acks

• 3PC
– prepare->precommit ->	commit

• Not	covered	in	class
– discussed	in	the	book

Duke	CS,	Fall	2018 CompSci	516:	Database	Systems 64


